• Title/Summary/Keyword: Construction Machine and Equipment

Search Result 166, Processing Time 0.024 seconds

Hydraulic System Design and Vehicle Dynamic Modeling for the Development of a Tire Roller

  • Kim, Sang-Gyum;Kim, Jung-Ha;Lee, Woon-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.484-494
    • /
    • 2003
  • In this paper, we describe a hydraulic system design and vehicle dynamic modeling for development of tire roller traction, an essential aspect in the system analysis of tire rollers. Generally, tire rollers are one of the most useful types of machines employed in road construction, technically applied to many construction fields. We also conceptualize a new hydraulic and driving system as well as define the motion equations for dynamic and hydraulic analysis. First, we design the hydraulic circuit of the steering control and driving machine system, which can be employed to advance the performance of the lateral control, creating a prototype of construction equipment. Second, we formulate the hydraulic steering system model and hydraulic driving system model through tire roller system development technology. Finally, we validate the acquired performance results in actual tire roller equipment using the data acquisition system. These results may perhaps facilitate the establishment of priorities and design strategies for incremental introduction of tire roller technology into the vehicle and construction field.

Analysis on Research Trend of Productivity Using Text Mining - Focusing on KSCE Journal - (텍스트 마이닝을 통한 건설 생산성 분야의 연구동향 분석 - KSCE 저널을 중심으로 -)

  • Gu, Bongil;Huh, Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • The relationship between keywords, found in all productivity related papers published in the KSCE journal for last 15 years, were analyzed in order to reveal a research trend in the area using text mining and A-Priori algorithm. As the results, it is found that the word of 'productivity' is most closely related to the words of 'work' and 'labor'. Futhermore, the word is somewhat related to those of 'factor', 'model', simulation', and 'work time'. It is also revealed that, on the other hand, the words of 'machine' and 'equipment' have little relationships with the keyword. This research will be a great help for academia to understand a research trend in the area of construction productivity.

Development of Remote Control System based on CNC Cutting Machine for Gradual Construction of Smart Factory Environment (점진적 스마트 팩토리 환경 구축을 위한 CNC 절단 장비 기반 원격 제어 시스템 개발)

  • Jung, Jinhwa;An, Donghyeok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.12
    • /
    • pp.297-304
    • /
    • 2019
  • The technological advances such as communication, sensor, and artificial intelligence lead smart factory construction. Smart factory aims at efficient process control by utilizing data from the existing automation process and intelligence technology such as machine learning. As a result of constructing smart factory, productivity increases, but costs increase. Therefore, small companies try to make a step-by-step transition from existing process to smart factory. In this paper, we have proposed a remote control system that support data collection, monitoring, and control for manufacturing equipment to support the construction of CNC cutting machine based small-scale smart factory. We have proposed the structure and design of the proposed system and efficient sensing data transmission scheme. To check the feasibility, the system was implemented for CNC cutting machine and functionality verification was performed. For performance evaluation, the web page access time was measured. The results means that the implemented system is available level.

The Algorithm of Safety Equipment of The Hydraulic Excavator with Crane Working (크레인 기능을 가진 굴삭기 안전장치 알고리즘)

  • 손구영;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.75-79
    • /
    • 2002
  • A hydraulic Excavator is applied for outdoor tasks in construction, agriculture and undersea etc. When a hydraulic Excavator works crane function tasks, most of disasters happen. In this study, In order to preventing these disasters, the safety equipment algorithm for crane working is developed, and the safety equipment algorithm for crane working is being developed. The proposed control algorithm(Zero Moment Point) is designed to avoid overload. The hydraulic excavator for crane function must work within a maximum limit of load. To accurately detect a working load, pressure sensors of boom, arm cylinder, and angle sensors of boom, arm and bucket joint are used.

  • PDF

Prediction of dynamic soil properties coupled with machine learning algorithms

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.253-262
    • /
    • 2024
  • Dynamic properties are pivotal in soil analysis, yet their experimental determination is hampered by complex methodologies and the need for costly equipment. This study aims to predict dynamic soil properties using static properties that are relatively easier to obtain, employing machine learning techniques. The static properties considered include soil cohesion, friction angle, water content, specific gravity, and compressional strength. In contrast, the dynamic properties of interest are the velocities of compressional and shear waves. Data for this study are sourced from 26 boreholes, as detailed in a geotechnical investigation report database, comprising a total of 130 data points. An importance analysis, grounded in the random forest algorithm, is conducted to evaluate the significance of each dynamic property. This analysis informs the prediction of dynamic properties, prioritizing those static properties identified as most influential. The efficacy of these predictions is quantified using the coefficient of determination, which indicated exceptionally high reliability, with values reaching 0.99 in both training and testing phases when all input properties are considered. The conventional method is used for predicting dynamic properties through Standard Penetration Test (SPT) and compared the outcomes with this technique. The error ratio has decreased by approximately 0.95, thereby validating its reliability. This research marks a significant advancement in the indirect estimation of the relationship between static and dynamic soil properties through the application of machine learning techniques.

A Study on Excavation Path Design of Excavator Considering Motion Limits (실차의 거동한계를 고려한 굴착기의 굴착 경로설계 연구)

  • Shin, Dae Young
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.20-31
    • /
    • 2021
  • An excavator is a construction machine that can perform various tasks such as trenching, piping, excavating, slope cutting, grading, and rock demolishing. In the 2010s, unmanned construction equipment using ICT technology was continuously developed. In this paper, the path design process was studied to implement the output data of the decision stage, and the path design algorithm was developed. For example, the output data of the decision stage were terrain data around the excavator, excavator mechanism information, excavator hydraulic information, the position and posture of the bucket at key points, the speed of the desired bucket path, and the required excavation volume. The result of the path design was the movement of the hydraulic cylinder, boom arm, bucket, and bucket edge. The core functions of the path design algorithm are the function of avoiding impact during the excavation process, the function to calculate the excavation depth that satisfies the required excavation volume, and the function that allows the bucket to pass through the main points of the excavation process while maintaining the speed of the desired path. In particular, in the process of developing the last function, the node tracking method expressed in the path design table was newly developed. The path design algorithm was verified as this path design satisfied the JCMAS H02 requirement.

Research on Major Trends of Smart Technologies in the Construction Sector Analyzed Through Big Data: Focusing on Government-led Initiatives

  • Wonpyo Hong;Taekeun Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.4
    • /
    • pp.493-506
    • /
    • 2024
  • In this paper, we analyzed new smart construction technologies based on the data registered from 2020 to July 2024 and identified a total of 21 technologies certified as smart construction technologies, which accounted for 21.6% of the total 167 new construction technologies. In addition, we analyzed the distribution by field and confirmed that 17 smart construction technologies (13.5%) were included in the civil engineering technology field, 3 in the architectural technology field (2.4%), and 3 in the mechanical equipment technology field (2.4%). After selecting 12 major keywords of smart construction technologies for TF-IDF analysis, we analyzed whether these keywords were included in the designated technical documents and found that the most frequently mentioned keyword among the 21 certified smart construction technologies was "data & artificial intelligence." This study is useful for understanding the current status of smart construction technologies and the utilization of important keywords in the construction technology field. Through this, it can be used as data to suggest the development direction of smart construction technologies and evaluate the technology demand and applicability in specific fields.

Development of Intelligent Hydraulic Excavator System with Crane Function (크레인 기능 부착 지능형 유압 굴삭기 시스템 개발)

  • Lee, Hong-Seon;Lee, Min-Hee;Lim, Tae-Hyeong;Chun, Se-Young;Yang, Soon-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.29-36
    • /
    • 2006
  • The hydraulic excavators are mainly applied for excavating, public works, quarrying, etc. In some of the construction site, however, they are used for crane works of relatively light materials, although the crane works by the hydraulic excavators are forbidden by law due to the safety reasons. The major construction equipment companies in forward countries have been developing the new systems, e.g. crane works by the hydraulic excavators, and they are working in the construction site. Therefore, the new system of crane works by the hydraulic excavators should be developed for the domestic construction site in order to prevent the accident. In this paper, the fundamental study and experiment are accomplished for the crane system application on the hydraulic excavators.

Development of a Soil Distribution Method and Equipment Operation Models Using Worker's Heuristics (작업자의 휴리스틱을 적용한 토량배분 및 장비운영 모델 개발)

  • Lim, So-Young;Kim, Sung-Keun;Ahn, Seo-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.551-564
    • /
    • 2016
  • Earthworks are the fundamental steps in a construction job, and are mainly comprised of smaller tasks performed by construction machinery. The productivity of the construction job can be improved by optimizing excavation, filling, and other such operations. Earthworks involve a lot of mechanical work performed by the collaboration between various kinds of construction equipment, which in turn leads to higher fuel consumption. Actual earthworks depend mostly on the intuition and experience of the driver of the machines, thus leading to inefficiency and environmental problems caused by unnecessary emission of carbon, Recently automated and information-oriented technologies are consistently being researched towards the improvement of efficiency of earthworks in the construction industry. The present research involves the introduction and understanding of the decision-making elements of heuristics which can be applied to the earthwork planning. A method is also suggested for creating an effective work path for construction machine to perform task packages (TP) for cutting and filling processes. A simulation test is performed to verify the effectiveness of suggested methods in terms of space interference and total moving distance of construction equipment.

Development on Identification Algorithm of Risk Situation around Construction Vehicle using YOLO-v3 (YOLO-v3을 활용한 건설 장비 주변 위험 상황 인지 알고리즘 개발)

  • Shim, Seungbo;Choi, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.622-629
    • /
    • 2019
  • Recently, the government is taking new approaches to change the fact that the accident rate and accident death rate of the construction industry account for a high percentage of the whole industry. Especially, it is investing heavily in the development of construction technology that is fused with ICT technology in line with the current trend of the 4th Industrial Revolution. In order to cope with this situation, this paper proposed a concept to recognize and share the work situation information between the construction machine driver and the surrounding worker to enhance the safety in the place where construction machines are operated. In order to realize the part of the concept, we applied image processing technology using camera based on artificial intelligence to earth-moving work. Especially, we implemented an algorithm that can recognize the surrounding worker's circumstance and identify the risk situation through the experiment using the compaction equipment. and image processing algorithm based on YOLO-v3. This algorithm processes 15.06 frames per second in video and can recognize danger situation around construction machine with accuracy of 90.48%. We will contribute to the prevention of safety accidents at the construction site by utilizing this technology in the future.