• 제목/요약/키워드: Construction Life-Cycle

검색결과 868건 처리시간 0.031초

Life Cycle Cost Breakdown Structure Development of Buildings through Delphi Analysis

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Ryu, Han-Guk;Kim, Gwang-Hee;Kim, Tae-Hui
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.528-538
    • /
    • 2012
  • With domestic construction projects becoming bigger, more specialized and more advanced, the construction industry is striving to improve quality and quantity, and is diversifying functions and shapes. Nevertheless, the process of a construction project causes problems when we estimate construction price, because the cost breakdown structures are different in each step. The primary aim of this study was to estimate building life cycle cost using the Delphi method. The cost breakdown structure for life cycle cost was classified into planning, design, construction, maintenance and waste disposal, and each detailed classification was determined by estimating life cycle cost. Moreover, the developed cost breakdown structure is verified by consulting with experts to secure objectivity and validity.

고로슬래그미분말의 전과정 CO2 배출원단위 평가 및 데이터베이스 구축 (Constructing Database for Estimating Life Cycle CO2 emissions from Blast Furnace Slag)

  • 박정훈;태성호;김태형;이강진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.49-51
    • /
    • 2012
  • This study was conducted as a part of database construction for development of CO2 assessment system for concrete to assess CO2 emissions and analyze characteristics of blast furnace slag manufactured in Korea through life cycle assessment method. For this, life cycle CO2 emissions assessment technique for construction materials was examined. The entire manufacturing process for blast furnace slag was analyzed on blast furnace slag manufacturer in Korea for application of assessment technique. Life cycle CO2 assessment was performed on blast furnace slag after classifying assessment process into raw material production step, raw material transportation step and construction material manufacture step.

  • PDF

MODEL-BASED LIFE CYCLE COST AND ASSESSMENT TOOL FOR SUSTAINABLE BUILDING DESIGN DECISION

  • Iris X. Han;W. Zhou;Llewellyn C.M. Tang
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.311-317
    • /
    • 2011
  • There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.

  • PDF

주거 Life-cycle상에서 고객만족도에 미치는 영향요인 분석에 관한 연구 (Analysis of factors which affect Customer Satisfaction through Life cycle of Residence)

  • 최정필;김정학;김재준
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.99-105
    • /
    • 2008
  • Resent, requirement of residents is socially increasing for apartment. Apartment housing os developed to reduce the housing shortage caused by urbanism after industrialization in Korea. The Purpose of this study is to analyze the casual relationships of housing satisfaction, living Life-Cycle on all residents of apartment housing. This study develops a theoretical model based on the previous studies, and testifies the hypothesis through analyzing to questionnaires form 643 residents of apartment housing. Then, the data were analyzed by SPSS12+ program package in terms of frequency, correlation analysis and multiple regression analysis. The results of this study is summarized as the followings: The perceived quality had positive effects on the factor of living Life-Cycle and housing satisfaction. Finding of this study can provide valuable information for a criterion of decision making to consumer and a marketing strategy of housing construction company.

건설구조물에 적용된 섬유복합재료의 LCC 검토 (Life Cycle Cost Analysis on the Application of FRP in Construction Field)

  • 한복규;신관수;김기수;홍건호
    • Composites Research
    • /
    • 제19권5호
    • /
    • pp.34-39
    • /
    • 2006
  • The mechanical properties and durabilities of fiber advanced composites make them ideal for widespread applications in construction worldwide. However, one of the problems of fiber reinforced advanced composites has expensive initial costs. So the efforts for lowering the initial cost have to be needed. There has been hardly assessment results of life cycle cost for fiber reinforced advanced composites in construction field, but some papers showed that total life cycle cost could be profitable, if the initial cost could be reduced. The purpose of this paper is to report assessment results of LCC(Life Cycle Cost) for application of FRP(Fiber Reinforced Plastic) in construction field.

Quantifying Values from BIM-projects life cycle with cloud-based computing

  • Choi, Michelle Mang Syn;Kim, Inhan
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.271-275
    • /
    • 2015
  • A variety of evaluation application and initiatives on the adoption of Building Information Modelling (BIM) have been introduced in recent years. Most of which however, focused mainly on evaluating design to construction phase-processes, or BIM utilization performances. Through studying existing publications, it is found that continuous utilization of BIM data throughout the building's life cycle is comparatively less explored or documented. Therefore, this study looks at improving this incomplete life cycle condition with the concept that accumulated BIM data should be carried forward and statistically quantified for cross comparison, in order to facilitate practitioners to better improve the projects the future. Based on this conceptual theory of moving towards a closedloop BIM building life cycle, this study explores, through existing literature, the use of cloud based computing as the means to quantify and adaptively utilize BIM data. Categorization of BIM data relations in adaptive utilization of BIM data is then suggested as a initial step for enhancing cross comparison of BIM data in a cloud environment.

  • PDF

INTEGRATED LIFE-CYCLE COST ANALYSIS CONSIDERING ENVIRONMENTAL COSTS: A HIGHWAY PROJECT CASE

  • Woo-Sik Jang;Heedae Park;Sungmin Kim;Seung Heon Han;Jong Seo Jeon
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.273-279
    • /
    • 2011
  • Concerns over the environment have spawned a number of research studies in the construction industry, as the construction of built environments and large infrastructures involves diverse environmental impacts and loads of hazardous emissions. Many researchers have attempted to quantify these environmental loads, including greenhouse gases, carbon dioxide, nitrogen dioxide, and sulfur dioxide, to name a few. However, little research has been conducted regarding integrating the life-cycle assessment (LCA) of environmental loads with the current life-cycle cost analysis (LCCA) approach. This study aims to estimate the environmental loads as a monetary value using the European Climate Exchange (ECX) rate and, then, to integrate those impacts with the pure construction cost. Toward this end, this study suggests an integrated approach that takes into account the environmental effect on the evaluation of the life-cycle cost (LCC). The bill of quantity (BOQ) data of a real highway project are collected and analyzed for this purpose. As a result, considering the environmental loads in the pavement process, the total LCC increased 16% from the traditional LCC cost. This study suggests an integrated approach that will account the environmental effect on the LCC. Additionally, this study is expected to contribute to better decision-making, from the perspective of more sustainable development, for government as well as for contractors.

  • PDF

Applications of bridge information modeling in bridges life cycle

  • Marzouk, Mohamed M.;Hisham, Mohamed;Al-Gahtani, Khalid
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.407-418
    • /
    • 2014
  • The purpose of this paper is to present an Integrated Life Cycle Bridge Information Modeling that can be used throughout different phases of the bridge life cycle including: design, construction, and operation and maintenance phases. Bridge Information Modeling (BrIM) has become an effective tool in bridge engineering and construction. It has been used in obtaining accurate shop drawings, cost estimation, and visualization. In this paper, BrIM is used as an integrated tool for bridges life cycle information modeling. In the design phase, BrIM model can be used in obtaining optimum construction methods and performing structural advanced analysis. During construction phase, the model selects the appropriate locations for mobile cranes, monitors the status of precast components, and controls documents. Whereas, it acts as a tool for bridge management system in operation and maintenance phase. The paper provides a detailed description for each use of BrIM model in design, construction, and operation and maintenance phases of bridges. It is proven that BrIM is an effective tool for bridge management systems throughout their life phases.

LCC 평가를 통한 지붕방수공법선정에 관한 연구 (A Study on Selection of Roof Waterproofing Method by analyzing Life Cycle Costing)

  • 최오영;김태희;김광희
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.127-134
    • /
    • 2008
  • The purpose of this study is to propose the decision making technique in roof waterproofing method at the early construction stage. Selecting the suitable construction method is difficult because of the complex interrelationships between many factors of influencing the construction method selection. This study presents an example of selecting suitable method by analyzing LCC (Life Cycle Cost) in roof waterproofing work. In this study, roof waterproofing method is analyzed by LCC(Life Cycle Cost) which is consists of the initial costs, running costs, and removal costs. Sheet waterproofing, membrane waterproofing and asphalt waterproofing costs are compared to select the most economic method. The result of this study revealed that considering LCC is useful in selecting the proper method in the construction work.

건설 생산의 Life Cycle을 고려한 효율성 측정방안 (An Approach on Life Cycle Based Efficiency Measurement in Construction Industry)

  • 정순오;윤수원;진상윤;김예상;박지훈
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2004년도 제5회 정기학술발표대회 논문집
    • /
    • pp.608-611
    • /
    • 2004
  • 건설 프로세스에서 효율성은 프로젝트의 성패를 좌우하는 중요한 요인 중의 하나이다. 하지만 기존의 생산성 향상 방안들은 1인당 매출과 같이 단순히 결과 위주의 지표를 중심으로 프로젝트를 관리함으로써 많은 변화 요인을 가지고 있는 건설 산업을 특성을 반영하는데 한계를 가지고 있으며, 특히 다수의 참여자에 의해 여러 단계로 진행되는 건설 프로젝트의 Life cycle 상에서 각 공종별 생산성 측정 및 관리, 그리고 생산성 저하의 원인을 도출하는데 한계를 가지고 있다. 따라서 본 연구는 결과 위주의 성과측정 방법인 생산성 개념을 보완하기 위해 프로젝트의 Life cycle의 각 단계별 정성적 평가를 포함하는 건설 효율성 개념을 제안하고 이를 측정하는 방법론을 제시하였으며, 초고층 빌딩의 커튼월 프로세스를 대상으로 제안한 모델을 적용하져다.

  • PDF