• Title/Summary/Keyword: Construction Key Technology

검색결과 600건 처리시간 0.026초

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Experimental investigation of steel fiber effects on anti-penetration performance of self-compacting concrete

  • Jian Ma;Liang Bian;Jie Zhang;Kai Zhao;Huayan Yao;Yongliang Zhang
    • Advances in concrete construction
    • /
    • 제16권2호
    • /
    • pp.119-126
    • /
    • 2023
  • Steel fiber reinforced self-compacting concrete (SFRSCC) has good workability such as high flowability and good cohesiveness. The workability, compressive strength, splitting tensile strength, and anti-penetration characteristics of three kinds of SFRSCC were investigated in this paper. The fraction of steel fibers of the SFRSCC is 0.5%, 1.5% and 2.0% respectively. The results of the static tests show that the splitting tensile strength increases with the increase of fraction of steel fibers, while the compressive strength of 1.5% SFRSCC is lowest. It is demonstrated that the anti-penetration ability of 1.5% SFRSCC subjected to a velocity projectile (200-500 m/s) is better than 0.5% and 2.0% SFRSCC according to the experimental results. Considering the steel fiber effects, the existing formula is revised to predict penetration depth, and it is revealed that the revised predicted depth of penetration is in good agreement with the experimental results. The conclusion of this paper is helpful to the experimental investigations and engineering application.

Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack

  • Zuo, Xiao-Bao;Wang, Jia-Lin;Sun, Wei;Li, Hua;Yin, Guang-Ji
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.19-31
    • /
    • 2017
  • This paper uses modelling and experiment to perform a quantitative analysis for the gypsum and ettringite formations in cement pastes subjected to sulfate attack. Firstly, based on Fick's law and chemical reaction kinetics, a diffusion model of sulfate ions in cement pastes is proposed, and then the model of the gypsum and ettringite formations is established to analyze its contents in cement pastes with corrosion time. Secondly, the corrosion experiment of the specimens with cement pastes immersed into 2.5%, 5.0% and 10.0% $Na_2SO_4$ solutions are carried out, and by using XRD-Rietveld method, the phases of powder samples from the specimens are quantitatively analyzed to obtain the contents of gypsum and ettringite in different surface depth, solution concentration and corrosion time. Finally, the contents of gypsum and ettringite calculated by the models are compared with the results from the XRD experiments, and then the effects of surface depth, corrosion time and solution concentration on the gypsum and ettringite formations in cement pastes are discussed.

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

건설현장사고의 공종별 위험요소 분석 및 재발방지대책에 관한 연구 (A Study on the Analysis of Risk Factors and the Reoccurrence Prevention in Construction Site Accidents)

  • 허준규;최미르;오광진;신주열
    • 한국건설안전학회 논문집
    • /
    • 제1권1호
    • /
    • pp.16-21
    • /
    • 2018
  • 본 연구의 목적은 국토교통부로부터 위탁받아 한국시설안전공단에서 운영하고 있는 건설사고조사위원회 사무국에서 '15년부터 축적한 총 90건의 건설현장사고를 대상으로 공종별 위험요소 및 재발방지대책을 key word 행태로 발굴하여 유사한 원인으로 재발되는 건설현장사고를 방지하는 자료로 활용하고자 수행하였다. 본 연구에 활용한 건설사고 모집단은 건설사고 전체를 대표하기는 어려우나 일정 규모 이상의 건설사고에 대한 분석 자료로 통계적 가치가 있는 것으로 사료되며, 향후 보다 신뢰성있는 분석을 통한 피드백을 위해서는 효과적으로 건설사고정보를 수집할 수 있는 제도개선이 필요한 것으로 판단된다. 금번 분석된 내용은 현장에서 건설안전 확보를 위한 기초자료로 활용이 가능할 것으로 생각되며, 향후 건설안전정책 방향설정의 자료로도 활용될 수 있을 것으로 기대한다.

도심지 소단면 터널식 공동구의 핵심 안전 위험요소 및 위험성 평가 연구 (Study on key safety hazards and risk assessments for small section utility tunnel in urban areas)

  • 성주현;정민형
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.931-946
    • /
    • 2018
  • 도심지에서의 공동구의 활용성 증가에 따라 쉴드 TBM 공법이 적용된 터널식 공동구의 시공 및 연구개발이 활발히 진행되고 있다. 터널식 공동구는 지하굴착 공사로써 건설안전에 상대적으로 취약하지만, 건설업 재해율 감소를 위한 설계안전성 검토 제도 도입에도 불구하고 터널식 공동구 건설에 적합한 위험요소가 제대로 알려져 있지 않다. 따라서 본 연구에서는 터널식 공동구에 적합한 안전 위험요소를 발굴하고 이중에서 중점으로 관리되어야 할 핵심 안전 위험요소를 도출하였다. 도출된 핵심 안전 위험요소는 매트릭스 기법을 적용하여 위험성 평가를 실시함으로써 공동구 계획, 설계 및 시공 단계의 위험성 평가 및 주요 참고 자료로 사용될 수 있도록 하였다.

태풍 루사 영향에 의한 사면 붕괴 유형 및 특징 (Types and Characteristics of Slope Failure induced by the 15th Typhoon, Rusa)

  • 배규진;구호본;백용;최영태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.3.1-14
    • /
    • 2002
  • Many human lives and properties have been damaged by the annually occurring natural disasters. Among them, a typhoon accompanying a gale and a localized torrential downpour induce a first order damages. In this study, states, scales and other characteristics of slope failure induced by the typhoon Rusa, which damaged the whole Korea peninsular on August 30th for 3 days, were analyzed. In addition, permanent measures for slope failure are conducted to prepare natural disasters. Since the key factor on the slope failure is considered to be a rainfall. The characteristics of domestic rainfall and typhoon are investigated, and then failure forms and some characteristics of slope failure are analyzed. By comparing with the data of existing slopes, the hazard of slope failure is examined. There fundamental results could be applied to the future measures of slope failure.

  • PDF

THE IDENTIFICATION OF MALAYSIAN CONTRACTOR SATISFACTION DIMENSIONS: A STRATEGY FOR CONTINUOUS IMPROVEMENT

  • Md Asrul Nasid Masrom;Martin Skitmore;Adrian Bridge
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.335-339
    • /
    • 2011
  • The unique characteristics of the construction industry - such as the fragmentation of its processes, varied scope of works and diversity of its participants - are contributory factors to poor project performance. Several issues are unresolved due to the lack of a comprehensive technique to measure project outcomes including: inefficient decision making, insufficient communication, uncertain site conditions, a continuously changing environment, inharmonious working relationships, mismatched objectives within the project team and a blame culture. One approach to overcoming these problems appears to be to measure performance by gauging contractor satisfaction (Co-S) levels, but this has not been widely investigated as yet. Additionally, the key Co-S dimensions at the project level are still not fully identified. This paper concerns a study of satisfaction dimensions, primarily by a postal questionnaire survey of construction contractors registered by the Malaysian Construction Industry Development Board (CIDB). Eight satisfaction dimensions are identified that are significantly and substantially relate to these contractors - comprising: project cost performance, schedule performance, product performance, design satisfaction, site safety, project profitability, business performance and relationships between participants. -Each of these dimensions is accorded different priority levels of satisfaction by different contractors. The output of this study will be useful in raising the awareness and understanding of project teams regarding contractors' needs, mutual objectives and open communication to help to deliver a successful project.

  • PDF

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.