• Title/Summary/Keyword: Construction Key Technology

Search Result 600, Processing Time 0.03 seconds

A Case Study of Smart Node System by using 3D Printing Technology (3D 프린팅을 활용한 스마트노드 시스템의 적용 사례)

  • Na, Sangho;Lee, JangHyun;Park, YoungMi;Kim, SungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.6-7
    • /
    • 2021
  • 3D printing has the unique advantage of the ability to customize freeform products even in small quantities. It was recently applied successfully in the node connection system for the irregular shaped glass design of Gwanggyo Galleria Department Store. This was achieved by applying 3D printing technology for an innovative smart node design. The novel system offers flexibility to address various design challenges in addition to maximizing construction quality and reducing construction period. In this paper, we aim to examine the use of 3D printing based innovative technologies in the construction industry. With this aim in mind, we present the case of the Gwanggyo Galleria Department Store's smart nodes. The key objective of this study is creating awareness in the construction industry of the need to utilize fourth industrial revolution technology in architecture.

  • PDF

Study on the calculation methods to determine the scale of the sponge city facilities in residential area----- taking Shenzhen as an example

  • Liu, Jian;Dong, Min;Han, Yu-ting;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.337-345
    • /
    • 2017
  • The sponge city construction is being carried out in China, and how to reasonably determine the scale of the sponge city facilities is a key point that the planners and designers should seriously solve. In this paper, taking determination of the sponge city facilities in a residential building in Shenzhen as an example, the layout and scales of the rainwater tanks, raingardens, ecological roofs and permeable pavements are decided by using the volumetric method and stormwater management model (SWMM). The calculated results by the two methods are compared and analyzed. The results show that the scales of the sponge city facilities determined by the two methods are almost the same, and it means that any method can be used to determine the scale of sponge city facilities. The volumetric method is relatively simple, and it is suggested to use to determine the scale of sponge city facilities during planning stage. While SWMM is more complex and requires a lot of input conditions, but it can provide the reduction effects of the sponge city facilities for rainfalls with different recurrence periods. Therefore, SWMM is recommended to use the calculation of the hydrological process of the sponge city facilities during the design stage.

  • PDF

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Novel Trusted Hierarchy Construction for RFID Sensor-Based MANETs Using ECCs

  • Kumar, Adarsh;Gopal, Krishna;Aggarwal, Alok
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.186-196
    • /
    • 2015
  • In resource-constrained, low-cost, radio-frequency identification (RFID) sensor-based mobile ad hoc networks (MANETs), ensuring security without performance degradation is a major challenge. This paper introduces a novel combination of steps in lightweight protocol integration to provide a secure network for RFID sensor-based MANETs using error-correcting codes (ECCs). The proposed scheme chooses a quasi-cyclic ECC. Key pairs are generated using the ECC for establishing a secure message communication. Probability analysis shows that code-based identification; key generation; and authentication and trust management schemes protect the network from Sybil, eclipse, and de-synchronization attacks. A lightweight model for the proposed sequence of steps is designed and analyzed using an Alloy analyzer. Results show that selection processes with ten nodes and five subgroup controllers identify attacks in only a few milliseconds. Margrave policy analysis shows that there is no conflict among the roles of network members.

A development of indicators for public construction technology policy evaluation (공공건설기술 정책평가를 위한 지표 개발에 관한 연구)

  • Lee, Du-Heon;Lee, Kyo-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.191-193
    • /
    • 2011
  • The government has performed various countermeasures and policies for the efficiency of Construction Industry. However the analysis of the policy performance is not satisfied. In the study we benchmarked the construction performance evaluation system and indicators which was performed by advanced countries like the United States and the United Kingdom. So we suggested indicators for measuring performance of public construction cost saving strategy performed in 2008 by the Ministry of Land, Transport and Maritime Affairs. This paper will provide the basis for establishing future construction policies or plans.

  • PDF

Labor Vulnerability Assessment through Electroencephalogram Monitoring: a Bispectrum Time-frequency Analysis Approach

  • CHEN, Jiayu;Lin, Zhenghang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.179-182
    • /
    • 2015
  • Detecting and assessing human-related risks is critical to improve the on-site safety condition and reduce the loss in lives, time and budget for construction industry. Recent research in neural science and psychology suggest inattentional blindness that caused by overload in working memory is the major cause of unexpected human related accidents. Due to the limitation of human mental workload, laborers are vulnerable to unexpected hazards while focusing on complicated and dangerous construction tasks. Therefore, detecting the risk perception abilities of workers could help to identify vulnerable individuals and reduce unexpected injuries. However, there are no available measurement approaches or devices capable of monitoring construction workers' mental conditions. The research proposed in this paper aims to develop such a measurement framework to evaluate hazards through monitoring electroencephalogram of labors. The research team developed a wearable safety monitoring helmet, which can collect the brain waves of users for analysis. A bispectrum approach has been developed in this paper to enrich the data source and improve accuracy.

  • PDF

Prediction of duration and construction cost of road tunnels using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Nejati, Hamid Reza;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-75
    • /
    • 2022
  • Time and cost of construction are key factors in decision-making during a tunnel project's planning and design phase. Estimations of time and cost of tunnel construction projects are subject to significant uncertainties caused by uncertain geotechnical and geological conditions. The Gaussian Process Regression (GPR) technique for predicting ground condition and construction time and cost of mountain tunnel projects is used in this work. The GPR model is trained with data from past mountain tunnel projects. The model is applied to a case study in which the predicted time and cost of tunnel construction using the GPR model are compared with the actual construction time and cost for model validation and reducing the uncertainty for the future projects. In addition, the results obtained from the GPR have been compared with to other models of artificial neural network (ANN) and support vector regression (SVR) that the GPR model provides more accurate results.

CONSTRUCTION DEFECTS AND MONETARY RETENTIONS IN CONSTRUCTION PROJECT: A REVIEW OF CASE LAW

  • Priyanka Raina;John Tookey
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.629-635
    • /
    • 2011
  • Retentions are generally considered to be intended to act as a powerful tool to incentivize contractors/subcontractors to remedy defective work in cases of non-performance. This study attempts to establish the extent to which retentions can be used for this purpose by investigating case law connected with insurance and defective work. One of the significant questions is whether retentions are sufficient to deal with construction defects or value of retentions in the rectification of defects is illusory. The cost to repair a defect may vary depending on a number of components including type, cause, magnitude and the construction stage at which the defect occurs. It is expected that a review of existing cases on defective workmanship will provide an insight on the issues and whether retentions are effective in their intended function. In order to establish their functionality, the study described in this paper investigated 6 construction insurance cases to identify the critical issues and the causes of dispute. It was found that the nature and the cause of defects were different in each case. It was also established that certain defect types not covered by insurance may be covered by retentions - potentially one of the key uses of a retention strategy. It is expected that the findings will assist in forming a view on the quantum of money that may be required paving the way for a first time understanding on a rational basis for setting up retention regime.

  • PDF

Developing Model of Fusion Technology Between Information and Construction Industry (건설분야의 IT 융합기술 개발모델)

  • Seo, Ju-Won;Hwang, Chan-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1399-1404
    • /
    • 2010
  • In the edge of new jumping up in global market, our construction industry is required to develop a competitive power and new construction market. As a considerable global player, our construction industry and information technology industry are regarded as to achieve more competitiveness and new market by developing fusion technology between information and construction technology. But, practically not only the technologic barrier but unripe developing model, it is time to visualize fusion strategic model and possible area as a constructional point of view. The aim of fusion technology is to increase productivity by reducing labor power and over all life cycle cost and to suggest new market with effective demanding power such as ubiquitous-city. As a successful development model, both the demand driven approach dealing with prompt IT developing speed and a circular leading model boosted by leading group will be key factors.

CONSTRUCTION, ASSEMBLY AND COMMISSIONING OF KSTAR MAIN STRUCTURES

  • Yang, Hyung-Lyeol;Bak, Joo-Shik;Kim, Byung-Chul;Choi, Chang-Ho;Kim, Woong-Chae;Her, Nam-Il;Hong, Kwon-Hee;Kim, Geung-Hong;Kim, Hak-Kun;Sa, Jeong-Woo;Kim, Hong-Tack;Kim, Kyung-Min;Kim, Sang-Tae
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.439-450
    • /
    • 2008
  • The KSTAR device succeeded in first plasma generation on $13^{th}$ June of 2008 through comprehensive system test and commissioning. Among various kinds of the key factors that decisively affected the project, success in the construction and assembly of the major tokamak structure was most important one. Every engineering aspects of each structure were finally confirmed in the integrated commissioning period, and there were no severe troubles and failures prevented the KSTAR device from operating during the commissioning and the first plasma experiments. As a result, all of the experiences and technologies achieved through the KSTAR construction process are expected to be important fundamentals for future construction projects of superconducting fusion devices. This paper summarizes key engineering features of the major structures and of the machine assembly.