• Title/Summary/Keyword: Construction Field

Search Result 5,570, Processing Time 0.037 seconds

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A Study on the Location and Spatial Composition of Pihyang-jeong Zone (피향정(披香亭) 일원의 입지 및 공간구성에 관한 연구)

  • Lee, Hyun-Woo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.85-97
    • /
    • 2010
  • This research studied the location and the spatial composition of Pihyang-jeong zone. Pihyang-jeong is regarded as one of the five great pavilions in Chollabuk-do. Located in Taein-myeon of Jeongeup-si, Pihyang-jeong is also called as 'the number one pavilion in Honam area'. 1. There is no record regarding the first construction of Pihyang-jeong. There is only transmitting by word of mouth that the scholar Choi Chi-won had an excursion to here and composed some poetry during the age of King Heon-gang of Shilla dynasty. However, there are records that Lee Ji-gweng had expanded the humble structure in 1618, Park Sung-go repaired it in 1664 and Yoo Geun repaired it again in 1715. 2. The location of Pihyang-jeong is 'high in north and low in south' and typical 'mountain in rear and water in front'. It has Seong-hwang Mountain(189m) in the north, Hang-ga Mountain(106m) in the south, Tae Mountain(33m) in the south and an open field in the northwest. 3. The spatial composition around Pihyang-jeong is as following. Pihyang-jeong faces 'Hayeonji'(the lower side lotus pond) in the south-south-west direction. 4. The buildings around Pihyang-jeong are; Pihyang-jeong, which was the pavilion of the government official not directly in charge of government office, Hambyeok-lu in the Hayeonji and the facility for the caretaker. Pihyang-jeong is a rectangular building with double eaves and hipped-and-gabled roof. It has five rooms in the front and four rooms in the side. Hambyeok-lu had been first built in 1918 as two-storey wooden pavilion with dancheong, traditional multicolored paintwork on wooden buildings. Then it was modified into rectangular single-storey pavilion with hipped-and-gabled roof and five rooms in 1971. In 2010, it was rebuilt as a hexagonal pavilion; therefore, the present shape is completely different one from the original shape. 5. The scenic features around Pihyang-jeong are as following. There are 21 stone monuments in Pihyang-jeong zone. The fence surrounding Pihyang-jeong is a traditional Korean style crude stone fence. There are three gates in three-gates-style, each gate made with two posts and one 'matbae'(gabled) roof. Also, a stepping stone for mounting/dismounting was found in the east of Pihyang-jeong outer perimeter. 6. The water scenic feature around Pihyang-jeong is a representative case of drawing in the water from the natural pond nearby government office and building a pavilion around the water. 7. The planting around Pihyang-jeong is as following. There are Zelkova trees in the boundary perimeter. In the southern small park, there are Zelkova trees, Crape-myrtie trees, Bushy young pine trees, Pine trees, Satuki, Purple azalea and Grass field. Around Hambyeok-lu in the Ha-yeonji, Elm trees, Zelkova trees and Pine trees are growing in good condition.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Garden Construction and Landscape Characteristics of the Seochulji Pond Area in Gyeongju during the Middle of the Joseon Dynasty (조선 중기 경주 서출지(書出池) 일원의 정원 조영과 경관 특성)

  • Kim, Hyung-suk;Sim, Woo-kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.2
    • /
    • pp.62-79
    • /
    • 2019
  • This study examined the background of Gyeongju Seochulji Pond (world heritage, historic site No. 138), a historic pond in Sam-guk-yu-sa (三國遺事), and its landscaping period when it served as the garden of the Pungcheon Lim clan (豊川 任氏) in the middle of the Joseon dynasty. For this study, a literature review of poetry, prose, and a personal anthology, and a field survey were conducted. Changes in the landscape were analyzed by comparing the landscape appearing in the literature of the Joseon period with past photographs. The results were as follows: First, even though the function and landscape at that time cannot be guessed as the objective ground from Silla to the early part of the Joseon dynasty is insufficient, it has been managed as a Byeolseo (別墅) garden as Pungcheon Lim's family resided in the area of Eastern-Namsan Mountain during the Joseon dynasty. At that time, Seochulji Pond was recognized as a historic place. It functioned as the garden of Pungcheon Lim's family as Lim Jeok (任勣, 1612~1672) built the Yiyodang pavilion (二樂堂). Second, in the literature, the Yiyodang pavilion has been called Gaekdang (客堂), Jeongsa (精舍), Byeolgak (別閣) and Byeolseo, etc. It can be seen as Nu and Jeong (樓亭), utilized for various uses. Because of this, the name Bingheoru Pavilion (憑虛樓) has mostly been in common use. Third, Seochulji Pond was positioned where the scenery is beautiful, with Gyeongju Mt. Namsan (Mt. Geumo) in the background and with a wide field and the Namcheon River flowing in the front. This was typical of Byeolseo gardens of the Joseon dynasty, combining human environments with natural environments. Fourth, the relationship with the Byeolseo garden disappeared as the head of Pungcheon Lim's family added a temple, lotus flowers, pine trees, and a bamboo forest as described in the old poetry and prose. Currently, the landscape does not appear to be significantly different from that as development has not occurred in the area of Seochulji Pond. Also, crape myrtle (Lagerstroemia indica), which now symbolizes the Seochulji Pond, was not identified in the old poetry or past photographs and is not old enough to confirm whether it was prominent at the time. Through this study, it is necessary to reconsider the spatial meanings of the gardens of the Joseon dynasty period and not to highlight the area of Seochulji Pond as a place in the legend. This is a cultural asset in the area of Eastern-Namsan Mountain and has an important meaning in terms of garden history.

Successful Management and Operating System of a UNESCO World Heritage Site - A Case Study on the Wadi Al-Hitan of Egypt - (유네스코 세계자연유산의 성공적인 관리와 운영체계 - 『이집트 Wadi Al-Hitan』의 사례 -)

  • Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.106-121
    • /
    • 2011
  • The number of World Natural Heritage Sites is smaller than that of World Cultural Heritage Sites. As of 2010, the total number of natural sites was 180, which is less than 1/3 of all cultural sites. The reason why the number of natural sites is smaller can be attributed to the evaluating criteria of OUV(outstanding universal value). Only 9 fossil related sites were designated as World Heritage Sites among 180 Natural Sites. This study compares their OUVs including the academic value and characteristics of the 9 World Heritage Sites to provide data and reference for KCDC(Korean Cretaceous Dinosaur Coast) to apply as a World Natural Heritage Site. This study was carried out to obtain information and data on the Wadi Al-Hitan of Egypt which was designated as a World Natural Heritage Site. The study includes field investigation for whale fossils, interviews of site paleontologists and staff, and inspections of facilities. Three factors can likely be attributed to its successful management and operating system. First, there is a system for comprehensive research and a monitoring plan. Secondly, experts have been recruited and hired and professional training for staff members has been done properly. Finally, the Wadi Al-Hitan has developed local resources with specialized techniques for conservation and construction design, which matched well with whale fossils and the environment at the site. The Wadi Al-Hitan put a master plan into practice and achieved goals for action plans. To designate a future World Natural Heritage Site in Korea, it is important to be recognized by international experts including IUCN specialists as the best in one's field with OUV. Full-time regular-status employees for a research position are necessary from the preparation stage for the UNESCO World Heritage Site. Local government and related organizations must do their best to control monitoring plans and to improve academic value after the UNESCO World Heritage Site designation. As we experienced during the designation process of Jeju Volcanic Island and Lava Tubes as the first Korean World Natural Heritage Site, participation by various scholars and specialists need to be in harmony with active endeavors from local governments and NGOs.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Grouting Improvement through Correlation Analysis of Hydrogeology and Discontinuity Factors in a Jointed Rock-Mass (절리 암반의 수리지질 및 불연속면 특성 간 상관분석을 통한 그라우팅 계획 수립의 개선 방안)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.279-294
    • /
    • 2024
  • Large-scale civil engineering structures such as dams require a systematic approach to jointed rock-mass grouting to prevent water leakage into the foundations and to ensure safe operation. In South Korea, rock grouting design often relies on the experience of field engineers that was gained in similar projects, highlighting the need for a more systematic and reliable approach. Rock-mass grouting is affected mainly by hydrogeology and the presence of discontinuities, involving factors such as the rock quality designation (RQD), joint spacing (Js), Lugeon value (Lu), and secondary permeability index (SPI). This study, based on data from field investigations of 14 domestic sites, analyzed the correlation between hydrogeological factors (Lu and SPI), discontinuity characteristics (RQD and Js), and grout take, and systematically established a design method for rock grouting. Analysis of correlation between the variables RQD, Js, Lu, and SPI yielded Pearson correlation (r) values as follows: Lu-SPI, 0.92; RQD-Lu, -0.75; RQD-Js, 0.69; RQD-SPI, -0.65; Js-Lu, -0.47; and SPI-Js, -0.41. The grout take increases with Lu and SPI values, but there is no significant correlation between RQD and Js. The proposed approach for grouting design based on SPI values was verified through analysis and comparison with actual curtain-grouting construction, and is expected to be useful in practical applications and future studies.

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.