• Title/Summary/Keyword: Construction Behavior

Search Result 3,638, Processing Time 0.033 seconds

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

The Influence of Qualitative and Quantitative Safety Management Activities and Employees' Safety Awareness on Safety Behavior in the Construction Company: Focusing on the Mediating Effects of Organizational Trust (건설업체의 정성적·정량적 안전경영활동과 근로자의 안전의식이 안전행동에 미치는 영향에 관한 연구: 조직신뢰의 매개 효과를 중심으로)

  • O, Soo Un;Heo, Chul Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.6
    • /
    • pp.203-213
    • /
    • 2015
  • This study is to test the influence of safety management activities and employees' safety awareness on safety behavior in the construction company following the atmosphere of a safety-driven society. Recently, the perspective of many individuals and companies for safety management is changing and the recognition is spreading that physical and conscious investment on the safety of industrial sites are not an useless cost but the vital element to enhance the corporate competitiveness. CEOs have an emphasis on the safety management in their workplace as a top priority. For this study, the data were collected and analyzed from 300 employees of industrial sites. Firstly, the results showed that safety management activities and employees' safety awareness had a positive impact on organizational trust. Secondly, the organizational trust had a positive impact on safety behavior. Thirdly, safety management activities and employees' safety awareness had a positive impact on safety behavior. And also found out the organizational trust had the mediating role between safety management activities and safety behavior, and between employees' safety awareness and safety behavior. The results of this study suggested that safety management activities and employees' safety awareness in the construction companies are very important factors influencing on the safety behavior, and the investment for the safety of the construction company should be continued.

  • PDF

Development of Three Dimensional Analysis Method of High-Rise Buildings Considering the Construction Sequence and the Inelastic Behavior (시공 단계 및 비탄성거동을 고려한 초고층 건축물의 3차원 해석 기법 개발)

  • Yang, Joo-Kyoung;Seol, Hyun-Cheol;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2008
  • With consideration of the ongoing construction of high-rise buildings, it is becoming increasingly important to be able to accurately predict the behavior of them on the stage of design, construction and service. Even though many researchers have developed the analysis method to predict the behavior of high-rise buildings, their studies were based on the two dimensional frame structures composed of line elements such as beams and columns. Recently the high-rise buildings with flat-plate system is widely used because of its advantages. In this study a three dimensional analysis method is developed to analyze the behavior of the high-rise buildings with flat-plate system since it is difficult to model the structural systems reasonably with the existing two dimensional analysis method. The analysis method considered the construction sequence including the temporary work such as installation of form, removal of form, installation of shore, and removal of shore. Line elements were used to describe columns, beams, and shores and plate elements were used to model slabs. The creep and drying shrinkage of concrete were also considered to account for the inelastic behavior of concrete.

Outdoor Workers' Use of Sun Protection at Work and Leisure

  • Peters, Cheryl E.;Koehoorn, Mieke W.;Demers, Paul A.;Nicol, Anne-Marie;Kalia, Sunil
    • Safety and Health at Work
    • /
    • v.7 no.3
    • /
    • pp.208-212
    • /
    • 2016
  • Background: Outdoor workers are at risk of high ultraviolet radiation exposure, and may have difficulty using sun protection. The objectives were to determine the prevalence of sun protection behaviors in a sample of outdoor construction workers, and to assess which factors predict better sun protection practices. Methods: Participants were recruited via construction unions. Workers answered a questionnaire on demographics, skin cancer risk, sun protection behaviors, and job. Sun protection behavior scores (from questions on sunscreen use, sleeved shirt, hat, shade seeking, sunglasses) were calculated by converting Likert-scale answers to scores from 0 to 4, and taking the mean (separately for work and leisure). Determinants of sun protection behavior scores were examined for work and leisure using generalized linear models. Results: Seventy-seven workers had complete questionnaire data (participation 98%). Sun protection behaviors used most often were hats (79% often/always) and sleeved shirts (82% often/always); least prevalent were shade-seeking (8% often/always) and sunscreen (29% often/always). For both work and leisure scores, the strongest predictor was skin type, with fairer-skinned individuals having higher sun protection behavior scores. Workers had higher scores at work than on weekends. Workplaces that required hats and sleeved shirts for safety purposes had higher protection behavior scores. Conclusion: This high-participation rate cohort helps characterize sun protection behaviors among outdoor workers. Workers practiced better sun protection at work than on weekends, suggesting that workplace policies supportive of sun protection could be useful for skin cancer prevention in the construction industry.

Analytical study on hydrodynamic motions and structural behaviors of hybrid floating structure

  • Jeong, Youn-Ju;Lee, Du-Ho;Park, Min-Su;You, Young-Jun
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-53
    • /
    • 2013
  • In this study, a hybrid floating structure with cylinder was introduced to reduce the hydrodynamic motions of the pontoon type. The hybrid floating structure is composed of cylinders and semi-opened side sections to penetrate the wave impact energy. In order to exactly investigate the hydrodynamic motions and structural behavior of the hybrid floating structure under the wave loadings, integrated analysis of hydrodynamic and structural behavior were carried out on the hybrid floating structure. Firstly, the hydrodynamic analyses were performed on the hybrid and pontoon models. Then, the wave-induced hydrodynamic pressures resulting from hydrodynamic analysis were directly mapped to the structural analysis model. And, finally, the structural analyses were carried out on the hybrid and pontoon models. As a result of this study, it was learned that the hybrid model of this study was showed to have more favorable hydrodynamic motions than the pontoon model. The surge motion was indicated even smaller motion at all over wave periods from 4.0 to 10.0 sec, and the heave and pitch motions indicated smaller motions beyond its wave period of 6.5 sec. However, the hybrid model was shown more unfavorable structural behavior than the pontoon model. High concentrated stress occurred at the bottom slab of the bow and stern part where the cylinder wall was connected to the bottom slab. Also, the hybrid model behaved with the elastic body motion due to weak stiffness of floating body and caused a large stress variation at the pure slab section between the cylinder walls. Hence, in order to overcome these problems, some alternatives which could be easily obtained from the simple modification of structural details were proposed.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

An Analytical and Experimental Study on the Mechanical Behavior of Excavating Turnels beneath the Roadway (공용중 도로하부의 굴착터널 해석 및 계측 연구)

  • Chung, Kuang-Mo;Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.99-104
    • /
    • 2012
  • A turnelling work beneath roadways or railways in use is unsafe and dangerous. A turnelling method should be analytically and experimentally studied to verify stability and safety of excavating works by construction step. The conventionally analytical method was ineffective in computational time and cost, so the new analytical method named homogenuity method, was developed and verified compared with analytical results. That method was applied to parameterly study the effect of distance of steel supports and overburdening height of soil. It showed that the homogenuity method was very practical and effective in step-by-step analysis considering construction sequences. A measuring device was set at the construction field and mechanical behavior was monitored during construction. Measuring values are larger than analytical values because impact of inserting steel pipes, lowering level of underground water and vibration of passing vehicles affected soil density during construction, but those values were within allowable limits.

Deformation characteristics of tunnel bottom after construction under geological conditions of long-term deformation

  • Kim, Nag-Young;Park, Du-Hee;Jung, Hyuk-Sang;Kim, Myoung-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • Mountainous areas cover more than 70% of Korea. With the rapid increase in tunnel construction, tunnel-collapse incidents and excessive deformation are occurring more frequently. In addition, longer tunnel structures are being constructed, and geologically weaker ground conditions are increasingly being encountered during the construction process. Tunnels constructed under weak ground conditions exhibit long-term deformation behavior that leads to tunnel instability. This study analyzes the behavior of the bottom region of tunnels under geological conditions of long-term deformation. Long-term deformation causes various types of damage, such as cracks and ridges in the packing part of tunnels, as well as cracks and upheavals in the pavement of tunnels. We observed rapid tunnel over-displacement due to the squeezing of a fault rupture zone after the inflow of a large amount of groundwater. Excessive increments in the support member strength resulted in damage to the support and tunnel bottom. In addition, upward infiltration pressure on the tunnel road was found to cause severe pavement damage. Furthermore, smectite (a highly expandable mineral), chlorite, illite, and hematite, were also observed. Soil samples and rock samples containing clay minerals were found to have greater expansibility than general soil samples. Considering these findings, countermeasures against the deformation of tunnel bottoms are required.

Construction Workers Fall Accidents from Scaffolding in Gaza Strip

  • Enshassi, Adnan;Shakalaih, Sobhi
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.65-69
    • /
    • 2015
  • The aim of this paper is to identify and rank the main causes of fall accidents from scaffolding according to their relative importance as perceived by project managers and site engineers in construction projects in the Gaza Strip. A total of 50 questionnaires were distributed to project managers and site engineers, 35 questionnaires were received yielding 70% response rate. A total of 33 factors that cause fall accidents in scaffolding were identified through a literature review and consolidated by a pilot study. These factors were categorized into six groups: factors related to erection, factors related to the staff (Scaffolders), factors related to loads, factors related to the personal safety, factors related to the workers behavior, factors related to the personal competencies. The results indicated that factors related to the workers behavior are the major factors that caused fall accidents from scaffolds. The results revealed that the top ranked factors which caused falls accidents from scaffolding were: absence of personal protective equipment (PPE), missing ladders, wind loads, disguised the design code, lack of proper assembly or inspection, overhead tools and materials, climbing and neglect using ladders, lack of guardrails, missing bracing and working during fatigue. These findings would help contractors to understand the top factors that caused fall accidents so that they can take them into consideration in safety planning in order to minimize the possibility of their occurrences.

  • PDF