• Title/Summary/Keyword: Constructal Law

Search Result 4, Processing Time 0.019 seconds

Constructal study on optimizing the pressure drop of the flow channel configurations with two diameters (형상법칙을 이용한 트리구조의 압력강하 최적화 연구)

  • Cho, Kee-Hyeon;Lee, Jae-Dal;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2652-2657
    • /
    • 2008
  • An analytical study was carried out on the flow resistance of tree-shaped channel flow architectures, based on the principle of the constructal law of evolutionary increase of flow access through the generation of better flowing configurations with two diameters in the square domain. Two types of tree-shaped configurations are optimized. The minimized global flow resistance decreases definitely as the system size, N, increases. And the best channel configurations among the first construct and second construct as a result of regarding pressure drop was selected. We also show that the freedom to morph the design and to increase its performance can be enhanced by using tree-tree configurations with $2^{nd}$ construct when N is greater than 18.

  • PDF

Optimizing the Configurations of Cooling Channels with Low Flow Resistance and Thermal Resistance (냉각유로 형상변화에 따른 유동 및 열저항 최적화 연구)

  • Cho, Kee-Hyeon;Ahn, Ho-Seon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • In this study, we investigated the hydrodynamic and thermal performance of constructal architectures on the basis of the mass flow rates for a given pressure drop, and we determined the thermal resistance and flow uniformity. The five flow configuration used in this study were the first construct with optimized hydraulic diameter, the second construct with optimized hydraulic diameter, the first construct with non-optimized hydraulic diameter, second construct with non-optimized hydraulic diameter, and a serpentine configuration. The results of our study suggest that the best fluid-flow structure is the second constructal structure with optimized constructal configurations. We also found that in the case of the optimized structure of cooling plates, the heat transfer was remarkably higher and the pumping power was significantly lower than those of traditional channels.

Study on Pressure Drop Optimization in Flow Channel with Two Diameters by Using Constructal Theory (형상법칙을 이용한 트리구조의 압력강하 최적화 연구)

  • Cho, Kee-Hyeon;Lee, Jae-Dal;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • An analytical study on the flow resistance of tree-shaped channel-flow architectures was carried out based on the principle of the constructal law; the evolutionary increase in the access to currents that flow through the channels with improvements in the flow configurations were studied in a square domain using two diameters. Two types of tree-shaped configurations were optimized. The minimized global flow resistance decreased steadily as the system size $N^2$ increased. From the two channel configurations, the one that resulted in better pressure drop was selected. Further, it was shown that the system performance can be enhanced by adopting the second tree-shaped configurations when the system size is greater than $18^2$.

Analytical, Numerical, and Experimental Comparison of the Performance of Semicircular Cooling Plates (반원형 구조의 냉각판 성능에 관한 해석적/수치해석적/실험적 비교)

  • Cho, Kee-Hyeon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1325-1333
    • /
    • 2011
  • An analytical, numerical, and experimental comparison of the hydraulic and thermal performance of new vascular channels with semicircular cross sections was conducted. The following conditions were employed in the study: Reynolds number, 30-2000; cooling channels with a volume fraction of the cooling channels, 0.04; and pressure drop, $30-10^5$ Pa. Three flow configurations were considered: first, second, and third constructal structures with diameters optimized for hydraulic operations. To validate the proposed vascular designs by an analytical approach, 3-D numerical analysis was performed. The numerical model was also validated by the experimental data, and the comparison results were in excellent agreement in all cases. The validation study against the experimental data showed that compared to traditional channels, the optimized structure of the cooling plates could significantly enhance heat transfer and decrease pumping power.