• Title/Summary/Keyword: Constrained Optimization

Search Result 456, Processing Time 0.019 seconds

Reservoir Management in Flood Period with Chance Constrained LP (위험도제약(危險度制約) 선형계획법(線形計劃法)에 위한 홍수기(洪水期) 저수지운영(貯水池運營))

  • Lee, Kil Seong;Kang, Bu Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.139-151
    • /
    • 1992
  • A reservoir operation model was established under the varying restricted water level(r.w.l.) subject to the inflow distributions in flood period. The optimization model consists of 2 sub-models. One model minimizes deviations of releases from the expected release and the other minimizes capacity requirement for flood control. In order to make deterministic equivalents, the inflow distribution of reservoir is assumed to be 2-parameter Lognormal, and its parameters are estimated by the maximum likelihood method. The model is applied to joint operation of Soyang and Chungju dam. The results show that Soyang was designed for larger flood event than that for Chungju. The operation under the varying r.w.l. turns out to be more effective than one under the uniform r.w.l. Such effect is more obvious at Chungju compared with Soyang. Release pattern shows diminishing and delaying effect in a period of high inflows and larger discharges than actual in a period of low inflows.

  • PDF

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Optimal Scheduling of Detection and Tracking Parameters in Phased Array Radars (위상배열 레이다 검출 및 추적 매개변수의 최적 스케쥴링)

  • Jung, Young-Hun;Kim, Hyun-Soo;Hong, Sun-Mog
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.50-61
    • /
    • 1999
  • \In this paper, we consider the optimal scheduling of detection and tracking parameters in phased array radars to minimize the radar energy required for track maintenance in a cluttered environment. We develop a mathematical model of target detection induced by a search process in phased array radars. In the mathematical development, we take into account the effect of unwanted measurements that may have originated from clutter or false alarms in the detection process. We use and analytic approximation of the modified Riccati equation of the probabilistic data association (PDA) filter to take into account the effect of clutter interference in tracking. Based on the search process and the tracking models, we formulate the optimal scheduling problem into a nonlinear optimal control problem. We solve a constrained nonlinear optimization problem to obtain the solution of the optimal control problem.

  • PDF

Development of a Nonlinear SI Scheme using Measured Acceleration Increment (측정 가속도 증분을 사용한 비선형 SI 기법의 개발)

  • Shin, Soo-Bong;Oh, Seong-Ho;Choi, Kwang-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.73-80
    • /
    • 2004
  • A nonlinear time-domain system identification algorithm using measured acceleration data is developed for structural damage assessment. To take account of nonlinear behavior of structural systems, an output error between measured and computed acceleration increments has been defined and a constrained nonlinear optimization problem is solved for optimal structural parameters. The algorithm estimates time-varying properties of stiffness and damping parameters. Nonlinear response of restoring force of a structural system is recovered by using the estimated time-varying structural properties and computed displacement by Newmark-$\beta$ method. In the recovery, no pre-defined model for inelastic behavior has been assumed. In developing the algorithm, noise and incomplete measurement in space and state have been considered. To examine the developed algorithm, numerical simulation and laboratory experimental studies on a three-story shear building have been carried out.

Using Genetic Algorithms for Routing Metric in Wireless Mesh Network (무선 메쉬 네트워크에서 유전 알고리즘을 이용한 라우팅 메트릭 기법)

  • Yoon, Chang-Pyo;Shin, Hyo-Young;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Wireless mesh network technology with transmission speeds similar to wired and wireless technology means to build, compared with wired networks, building a more efficient network to provide convenience and flexibility. The wireless mesh network router nodes in the energy impact of the mobility is less constrained and has fewer features entail. However, the characteristics of various kinds due to network configuration settings and the choice of multiple paths that can occur when the system overhead and there are many details that must be considered. Therefore, according to the characteristics of these network routing technology that is reflected in the design and optimization of the network is worth noting. In this paper, a multi-path setting can be raised in order to respond effectively to the problem of the router node data loss and bandwidth according to traffic conditions and links to elements of the hop count evaluation by using a genetic algorithm as a workaround for dynamic routing the routing metric for wireless mesh network scheme is proposed.

Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment (굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

Cost-Based Directed Scheduling : Part I, An Intra-Job Cost Propagation Algorithm (비용기반 스케쥴링 : Part I, 작업내 비용 전파알고리즘)

  • Kim, Jae-Kyeong;Suh, Min-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.121-135
    • /
    • 2007
  • Constraint directed scheduling techniques, representing problem constraints explicitly and constructing schedules by constrained heuristic search, have been successfully applied to real world scheduling problems that require satisfying a wide variety of constraints. However, there has been little basic research on the representation and optimization of the objective value of a schedule in the constraint directed scheduling literature. In particular, the cost objective is very crucial for enterprise decision making to analyze the effects of alternative business plans not only from operational shop floor scheduling but also through strategic resource planning. This paper aims to explicitly represent and optimize the total cost of a schedule including the tardiness and inventory costs while satisfying non-relaxable constraints such as resource capacity and temporal constraints. Within the cost based scheduling framework, a cost propagation algorithm is presented to update cost information throughout temporal constraints within the same job.

  • PDF

Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions

  • Yi Liao;Qi Cai;Shaopeng He;Mingjun Wang;Hongguang Xiao;Zili Gong;Cong Wang;Zhen Jia;Tangtao Feng;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1233-1243
    • /
    • 2023
  • Shell-and-tube heat exchanger (STHX) is widely used by virtue of its simple structure and high reliability, especially in a space-constrained surface ship. For the STHX of the surface ship, roll, pitch and other motion of the ship will affect the heat transfer performance, resistance characteristics and structural strength of the heat exchanger. Therefore, it is urgent to carry out numerical simulation research on three-dimensional thermal hydraulic characteristics of surface ship STHX under the marine conditions. In this paper, the numerical simulation of marine shell and tube heat exchanger of surface ship was carried out using the porous media model. Firstly, the mathematical physical model and numerical method are validated based on the experimental data of a marine engine cooling water shell and tube heat exchanger. The simulation results are in good agreement with the experimental results. The prediction errors of pressure drop and heat transfer are less than 10% and 1% respectively. The effect of marine conditions on the heat transfer characteristics of the heat exchanger is investigated by introducing the additional force model of marine condition to evaluate the effect of different motion parameters on the heat transfer performance of the heat exchanger. This study could provide a reference for the optimization of marine heat exchanger design.

OPTIMAL DEELECTION OF EARTH-CROSSING OBJECT USING A THREE-DIMENSIONAL SINGLE IMPULSE (3차원에서의 순간적인 속도변화에 의한 ECO의 최적궤도변경)

  • Mihn, Byeong-Hee;Park, Sang-Young;Roh, Kyoung-Min;Choi, Kyu-Hong;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.249-262
    • /
    • 2005
  • Optimization problems are formulated to calculate optimal impulses for deflecting Earth-Crossing Objects using a Nonlinear Programming. This formulation allows us to analyze the velocity changes in normal direction to the celestial body's orbital plane, which is neglected in many previous studies. The constrained optimization in the three-dimensional space is based on a patched conic method including the Earth's gravitational effects, and yields impulsive ${\Delta}V$ to deflect the target's orbit. The optimal solution is dependent on relative positions and velocities between the Earth and the Earth-crossing objects, and can be represented by optimal magnitude and angle of ${\Delta}V $ as a functions of a impulse time. The perpendicular component of ${\Delta}V $ to the orbit plane can sometimes play un-negligible role as the impulse time approaches the impact time. The optimal ${\Delta}V $ is increased when the original orbit of Earth-crossing object is more similar to the Earth's orbit, and is also exponentially increased as the impulse time reaches to the impact time. The analyses performed in present paper can be used to the deflection missions in the future.

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.