• 제목/요약/키워드: Constrained Neural Network

검색결과 38건 처리시간 0.024초

시변 2상 최적화 및 이의 신경회로망 학습에의 응용 (Time-Varying Two-Phase Optimization and its Application to neural Network Learning)

  • 명현;김종환
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

대칭 신경회로망과 그 응용에 관한 연구 (A Study on the Symmetric Neural Networks and Their Applications)

  • 나희승;박영진
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1322-1331
    • /
    • 1992
  • 본 연구에서는 Fig.3과 같은 다층 퍼셉트론을 사용하기로 한다. 그리고 위 에서 언급한 세가지점에서 다층퍼셉트론을 다시 살펴보아 해결하고자 하는 문제에 맞 도록 다층퍼셉트론을 개선시켜 보기로 한다. 따라서 본 연구의 목적은 제한조건을 갖는 문제를 풀기위한 새로운 형태의 다층퍼셉트론 설계 및 이에 적합한 학습규칙을 적용하여 보다 간단한 구조와 빠른 학습시간을 갖는 신경망을 구성하는데 있다.

비선형 화학공정의 신경망 모델예측제어 (Neural model predictive control for nonlinear chemical processes)

  • 송정준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.490-495
    • /
    • 1992
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming cooperates with neural identification network is used to generate the optimum control law for the complicate continuous/batch chemical reactor systems that have inherent nonlinear dynamics. Based on our approach, we developed a neural model predictive controller(NMPC) which shows excellent performances on nonlinear, model-plant mismatch cases of chemical reactor systems.

  • PDF

Neural Model Predictive Control for Nonlinear Chemical Processes

  • Song, Jeong-Jun;Park, Sunwon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.899-902
    • /
    • 1993
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming combined with neural identification network is used to generate the optimum control law for complex continuous chemical reactor systems that have inherent nonlinear dynamics. The neural model predictive controller (MNPC) shows good performances and robustness. To whom all correspondence should be addressed.

  • PDF

통신 실패에 강인한 분산 뉴럴 네트워크 분할 및 추론 정확도 개선 기법 (Communication Failure Resilient Improvement of Distributed Neural Network Partitioning and Inference Accuracy)

  • 정종훈;양회석
    • 대한임베디드공학회논문지
    • /
    • 제16권1호
    • /
    • pp.9-15
    • /
    • 2021
  • Recently, it is increasingly necessary to run high-end neural network applications with huge computation overhead on top of resource-constrained embedded systems, such as wearable devices. While the huge computational overhead can be alleviated by distributed neural networks running on multiple separate devices, existing distributed neural network techniques suffer from a large traffic between the devices; thus are very vulnerable to communication failures. These drawbacks make the distributed neural network techniques inapplicable to wearable devices, which are connected with each other through unstable and low data rate communication medium like human body communication. Therefore, in this paper, we propose a distributed neural network partitioning technique that is resilient to communication failures. Furthermore, we show that the proposed technique also improves the inference accuracy even in case of no communication failure, thanks to the improved network partitioning. We verify through comparative experiments with a real-life neural network application that the proposed technique outperforms the existing state-of-the-art distributed neural network technique in terms of accuracy and resiliency to communication failures.

The shortest path finding algorithm using neural network

  • Hong, Sung-Gi;Ohm, Taeduck;Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.434-439
    • /
    • 1994
  • Recently neural networks leave been proposed as new computational tools for solving constrained optimization problems because of its computational power. In this paper, the shortest path finding algorithm is proposed by rising a Hopfield type neural network. In order to design a Hopfield type neural network, an energy function must be defined at first. To obtain this energy function, the concept of a vector-represented network is introduced to describe the connected path. Through computer simulations, it will be shown that the proposed algorithm works very well in many cases. The local minima problem of a Hopfield type neural network is discussed.

  • PDF

신경회로망을 이용한 모터의 시간최적 제어 (Time-optimal control for motors via neural networks)

  • 최원수;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1169-1172
    • /
    • 1996
  • A time-optimal control law for quick, strongly nonlinear systems has been developed and demonstrated. This procedure involves the utilization of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the known and unknown systems with constrained inputs and/or states. The nature of neural networks as a parallel processor would circumvent the problem of "curse of dimensionality". The control law has been demonstrated for a velocity input type motor identified by a genetic algorithm called GENOCOP.

  • PDF

신경 회로망을 이용한 음성 신호의 장구간 예측 (Long-term Prediction of Speech Signal Using a Neural Network)

  • 이기승
    • 한국음향학회지
    • /
    • 제21권6호
    • /
    • pp.522-530
    • /
    • 2002
  • 본 논문에서는 선형 예측 후에 얻어지는 잔차 신호 (residual signal)를 신경 회로망에 바탕을 둔 비선형 예측기로 예측하는 방법을 제안하였다. 신경 회로망을 이용한 예측 방법의 타당성을 입증하기 위해, 먼저 선형 장구간 예측기와 신경 회로망이 도입된 비선형 장구간 예측기의 성능을 서로 비교하였다. 그리고 비선형 예측 후의 잔차 신호를 양자화 하는 과정에서 발생하는 양자화 오차의 영향에 대해 분석하였다. 제안된 신경망 예측기는 예측 오차뿐만 아니라 양자화의 영향을 함께 고려하였으며, 양자화오차에 대한강인성을 갖게 하기 위하여 쿤-터커 (Kuhn-Tucker) 부등식 조건을 만족하는 제한조건 역전파 알고리즘을 새로이 제안하였다. 실험 결과, 제안된 신경망 예측기는 제한조건을 갖는 학습 알고리즘을 사용했음에도 불구하고, 예측 이득이 크게 뒤떨어지지 않는 성능을 나타내었다.

진화연산과 신경망이론을 이용한 전력계통의 최적환경 및 경제운용 (Optimal Environmental and Economic Operation using Evolutionary Computation and Neural Networks)

  • 이상봉;김규호;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1498-1506
    • /
    • 1999
  • In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.

  • PDF

환경적 배출량을 고려한 경제급전 문제의 신경회로망 응용 (Environmental Constrained Economic Dispatch Using Neural Network)

  • 이상봉;이재규;김규호;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1100-1102
    • /
    • 1998
  • This paper presents the Two-Phase Neural Network(TPNN) to slove the Optimal Economic Environmental Dispatch problem of thermal generating units in electric power system. The TPNN, Compared with other Neural Networks, is very accurate and it takes smaller computer time for a optimization problem to converge. In this work, in order to provide useful information to the system operator, we are used the total environmental weight and relative weighting of individual insults(e.g., $SO_2$, $NO_X$ and $CO_2$) also, presented the simulation results of the dispatch changes according to the weights. The Two-Phase Neural Network is tested on a 11-unit 3-pollutant system to prove of effectiveness and applicability.

  • PDF