• Title/Summary/Keyword: Constitutive Modeling

Search Result 252, Processing Time 0.028 seconds

Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches

  • Ghaboussi, Jamshid;Wu, Xiping
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.955-969
    • /
    • 1998
  • Engineering problems are inherently imprecision tolerant. Biologically inspired soft computing methods are emerging as ideal tools for constructing intelligent engineering systems which employ approximate reasoning and exhibit imprecision tolerance. They also offer built-in mechanisms for dealing with uncertainty. The fundamental issues associated with engineering applications of the emerging soft computing methods are discussed, with emphasis on neural networks. A formalism for neural network representation is presented and recent developments on adaptive modeling of neural networks, specifically nested adaptive neural networks for constitutive modeling are discussed.

A Study on Strain Rate Sensitivity by Unified Viscoplasticity (점소성 이론에 의한 변형률 속도 민감도에 대한 연구)

  • 호괄수
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.600-607
    • /
    • 2004
  • This paper addresses a viscoplastic constitutive model that allows a consistent way of modeling positive and negative rate sensitivities of flow stress concerned with dynamic strain aging. Based on the concept of continuum mechanics, a phenomenological constitutive model includes the use of a yield surface within the framework of unified viscoplasticity theory. To model negative rate sensitivity, rate-dependent back stress is introduced and flow stress in fully developed inelastic deformation regime is thus decomposed into the plastic contribution of rate independency and the viscous one of rate dependency.

Application of data driven modeling and sensitivity analysis of constitutive equations for improving nuclear power plant safety analysis code

  • ChoHwan Oh;Doh Hyeon Kim;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.131-143
    • /
    • 2023
  • Constitutive equations in a nuclear reactor safety analysis code are mostly empirical correlations developed from experiments, which always accompany uncertainties. The accuracy of the code can be improved by modifying the constitutive equations fitting wider range of data with less uncertainty. Thus, the sensitivity of the code with respect to the constitutive equations is evaluated quantitatively in the paper to understand the room for improvement of the code. A new methodology is proposed which first starts by dividing the thermal hydraulic conditions into multiple sub-regimes using self-organizing map (SOM) clustering method. The sensitivity analysis is then conducted by multiplying an arbitrary set of coefficients to the constitutive equations for each sub-divided thermal-hydraulic regime with SOM to observe how the code accuracy varies. The randomly chosen multiplier coefficient represents the uncertainty of the constitutive equations. Furthermore, the set with the smallest error with the selected experimental data can be obtained and can provide insight which direction should the constitutive equations be modified to improve the code accuracy. The newly proposed method is applied to a steady-state experiment and a transient experiment to illustrate how the method can provide insight to the code developer.

Modeling Constitutive Behavior of Mg Alloy Sheets for the Prediction of Sheet Springback (마그네슘 합금 판재의 구성식 개발: 스프링백에의 응용)

  • Lee, M.G.;Kim, S.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • Unusual mechanical constitutive behavior of magnesium alloy sheets has been implemented into the finite element program ABAQUS via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet'2002. In addition to the developed constitutive models, the other two models based on isotropic constitutive equations with tensile and compressive properties were also considered. Preliminary comparisons have been made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability in springback prediction.

  • PDF

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.

Modeling and Parametric Studies on Moment-Curvature Relations for Reinforced Concrete Columns (철근콘크리트 기둥의 휨-곡률 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.285-290
    • /
    • 2000
  • A mathematical model which can simulate biaxial moment-curvature relations for reinforced concrete column is developed. The developed model is capable of tracing the post-peak behavior of a column after peak load. The model can take into account different sectional shapes of a column and various constitutive models of confined concrete. The developed model is used to evaluate constitutive models of confined concrete under concentric loading, suggested by different researchers. Error function which measures the overall constitutive behavior of a confined concrete is intrcduced. The constitutive model minimizing this error function is selected and is incorporated into the developed model in order to investigate the effect of main parameters on the general column behavior.

  • PDF

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.