• Title/Summary/Keyword: Constitutive Model

Search Result 1,200, Processing Time 0.026 seconds

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.

Mechanical damage evolution and a statistical damage constitutive model for water-weak sandstone and mudstone

  • Lu yuan Wu;Fei Ding;Jian hui Li;Wei Qiao
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • The weakening effect of water on rocks is one of the main factors inducing deformation and failure in rock engineering. To clarify this weakening effect, immersion tests and post-immersion triaxial compression tests were conducted on sandstone and mudstone. The results showed that the strength of water-immersed sandstone decreases with increasing immersion time, exhibiting an exponential relationship. Similarly, the strength of water-immersed mudstone decreases with increasing environmental humidity, also following an exponential relationship. Subsequently, a statistical damage model for water-weakened rocks was proposed, changes in elastic modulus to describe the weakening effect of water. The model effectively simulated the stress-strain relationships of water-affected sandstone and mudstone under compression. The R2 values between the theoretical and experimental peak values ranged from 0.962 to 0.996, and the MAPE values fell between 3.589% and 9.166%, demonstrating the model's effectiveness and reliability. The damage process of water-saturated rocks corresponds to five stages: compaction stage - no damage, elastic stage - minor damage, crack development stage - rapid damage increase, post-peak residual stage - continuous damage increase, and sliding stage - damage completion. This study provides a foundational reference for researching the fracture characteristics of overlying strata during coal mining under complex hydrogeological conditions.

Development of Constitutive Equation for Soils Under Cyclic Loading Conditions (反復荷重을 받는 흙의 構成關係式 開發)

  • Jang, Byeong-Uk;Song, Chang-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Various soil behaviors usually occurring in the geotechnical problems, such as, cutting and embankments, stability of slope, seepage, consolidations, shearing failures and liquefaction, should be predicted and analyzed in any way. An approach of these predictions may be followed by the development of the constitutive equations as first and subsequently solved by numerical methods. The purpose of this paper is develop the constitutive equation of sands uder monotonic or cyclic loadings. The constitutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parameter by Sekiguchi et al and Pender's theory is derived. And the equation is included a new stress parameter, hardening function, Bauschinger's effects and Pender's theory. The model is later evaluated and confirmed the validity by the test data of Ottawa sand, Banwol sand Hongseong sand. The following conclustions may be drawn: 1. The consititutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parpameter by Sekiguchi et al and Pender's theory is derived. The equation in included a new stress parameter, hardening function, Bauschinger's effect and Pender's theory. 2. For Ottawa sand, the result of the constitutive equation shows a better agreement than that of Oka et al. The result of axial strain agrees well with the tested data. However, the result of horizontal strain is little bit off for the cyclic loadings or large stress. It is thought that the deviation may be improved by considering Poisson's ratio and precise measurement of shear modulus. 3. Banwol sand is used for the strain and stress tests with different relative densitites and confining pressures. The predeicted result shows a good agreement with the tested data because the required material parameters were directly measurd and determined form this laboratory. 4. For Hongseong sand, the tests under same amplitude of cyclic deviatoric stress shows a similar result with the tested data in absolute strain. It shows the acute shape of turning point because the sine wave of input is used in the test but the serrated wave in prediction.

  • PDF

Evaluation Technique of Seismic Performance on Agricultural Infrastructure - Based on Dynamic Numerical Analysis - (농업 기반시설의 내진성능 평가기법 - 동적 수치해석 중심으로-)

  • Lee, Dal-Won;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.75-84
    • /
    • 2004
  • The evaluation technique of seismic performance on agricultural infrastructure based on dynamic numerical simulations, which Included a cyclic elasto-plastic and a viscoelastic-viscoplastic constitutive model to actual multi-layered ground conditions during large earthquake were performed by a liquefaction analysis in the present study. From the liquefaction analysis, it was verified that the models can give a good description of the damping characteristics and liquefaction phenomena of ground accurately during large event which induces plastic deformation in large strain range.

Application of fiber element in the assessment of the cyclic loading behavior of RC columns

  • Sadjadi, R.;Kianoush, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.301-317
    • /
    • 2010
  • This paper studies the reliability of an analytical tool for predicting the lateral load-deformation response of RC columns while subjected to lateral cyclic displacements and axial load. The analytical tool in this study is based on a fiber element model implemented into the program DRAIN-2DX (fiber element). The response of RC column under cyclic displacement is defined by the behavior of concrete, and reinforcing steel under general reversed-cyclic loading. A tri-linear stress-strain relationship for the cyclic behavior of steel is proposed and the improvement in the analytical results is studied. This study only considers the behavior of columns with flexural dominant mode of failure. It is concluded that with the implementation of appropriate constitutive material models, the described analytical tools can predict the response of the columns with reasonable accuracy when compared to experimental data.

A mixture theory based method for three-dimensional modeling of reinforced concrete members with embedded crack finite elements

  • Manzoli, O.L.;Oliver, J.;Huespe, A.E.;Diaz, G.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.401-416
    • /
    • 2008
  • The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 3D composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.

Finite Element Modeling of Polarization Switching in Electro-Mechanically Coupled Materials (전기-기계적으로 연성된 재료의 분극역전 거동에 대한 유한요소 모델링)

  • Kim, Sang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1697-1704
    • /
    • 2001
  • A finite element model for polarization switching in electro-mechanically coupled materials is proposed and applied to predict the switching behavior of a two-dimensional ferroelectric ceramic. A complicated micro-structure existing in the material is modeled as il continuum body and a simple 3 node triangle finite element with nodal displacement and voltage degrees of freedom is used for a finite element analysis. The elements use nonlinear constitutive equations, switching criterion and kinetic relation, fur representation of material response at strong electric and stress fields. The polarization state of the material is represented by internal variables in each element, which are updated at each simulation step based on the proposed constitutive equations. The model reproduces strain and electric displacement hysteresis loops observed in the material.

On the congruence of some network and pom-pom models

  • Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • We show that some network and pom-pom constitutive models are essentially the same. Instead of the usual confrontation, we suggest that the two approaches can offer useful mutual support: vital information about network destruction rates found from detailed pom-pom calculations can be used to improve the network models, while deductions about network creation rates can pinpoint areas needing further attention in the tube modelling area. A new form of the PTT model, the PTT-X model, results in improved shear and elongational flow descriptions, plus an improved recoil behaviour. The remaining problems of strain-time separation, second normal stress difference description, and reduction of parameters are also discussed and some suggestions for progress are offered.

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.