On the congruence of some network and pom-pom models

  • Tanner, Roger I. (School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney)
  • Published : 2006.03.01

Abstract

We show that some network and pom-pom constitutive models are essentially the same. Instead of the usual confrontation, we suggest that the two approaches can offer useful mutual support: vital information about network destruction rates found from detailed pom-pom calculations can be used to improve the network models, while deductions about network creation rates can pinpoint areas needing further attention in the tube modelling area. A new form of the PTT model, the PTT-X model, results in improved shear and elongational flow descriptions, plus an improved recoil behaviour. The remaining problems of strain-time separation, second normal stress difference description, and reduction of parameters are also discussed and some suggestions for progress are offered.

Keywords

References

  1. Clemeur, N, R.P.G. Rutgers and B. Debbaut, 2003, On the evaluation of some differential formulations for the pom-pom constitutive model, Rheol. Acta 42, 217-231
  2. Huilgol, R.R. and N. Phan-Thien, 1997, Fluid Mechanics of Viscoelasticity, Elsevier, Amsterdam
  3. Larson, R.G., 1988, Constitutive equations for polymer melts and solutions, Butterworths, Boston
  4. Lodge, A.S., 1964, Elastic Liquids, Academic Press, London
  5. Meissner, J., 1979, Dehnungsverhalten von Polyaethylen-Schmelzen, Rheol. Acta 10, 230-292 https://doi.org/10.1007/BF02040447
  6. Phan-Thien, N. and R.I. Tanner, 1977, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2, 353-365 https://doi.org/10.1016/0377-0257(77)80021-9
  7. Rubio, P. and M.H. Wagner, 2000, LDPE melt rheology and the pom-pom model, J. Non-Newtonian Fluid Mech. 92, 245-259 https://doi.org/10.1016/S0377-0257(00)00094-X
  8. Tanner, R.I., 2000, Engineering Rheology, 2nd edn., Oxford Univ. Press
  9. Tanner, R.I. and S. Nasseri, 2003, Simple constitutive models for linear and branched polymers, J. Non-Newtonian Fluid Mech. 116, 1-17 https://doi.org/10.1016/j.jnnfm.2003.08.001
  10. Tanner, R.I. and K Walters, 1988, Rheology: An Historical Perspective, Elsevier, Amsterdam
  11. Tanner, R.I., A.M. Zdilar and S. Nasseri, 2005, Recoil from elongation using general network models, Rheol. Acta 44, 513-520 https://doi.org/10.1007/s00397-005-0433-8
  12. Verbeeten, W.M.H., G.W.M. Peters and F.P.T. Baaijens, 2001, Differential constitutive equations for polymer melts: The extended Pom-Pom model, J. Rheol. 45, 823-843 https://doi.org/10.1122/1.1380426
  13. Verbeeten, W.M.H., G.W.M. Peters and F.P.T. Baaijens, 2002, Viscoelastic analysis of complex polymer melt flows using the extended Pom-Pom model, J. Non-Newtonian Fluid Mech. 108, 301-326 https://doi.org/10.1016/S0377-0257(02)00136-2
  14. Wagner, M.H., 1979, Elongational behaviour of polymer melts in constant elongation-rate constant tensile stress, and constant tensile force experiments, Rheol. Acta 31, 44-54 https://doi.org/10.1007/BF00396466