• Title/Summary/Keyword: Constitutive Equation

Search Result 472, Processing Time 0.024 seconds

Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties (동적 물성치를 고려한 V.I. 충격인자의 영향 분석)

  • Lim, J.H.;Song, J.H.;Huh, H.;Park, W.J.;Oh, I.S.;Choe, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

Study on the Limit of Water Content by Cake Filtration and Effective Operation in Filtration-Expression Process (여과에 의한 케이크 함수량의 한계와 효율적인 여과-압착 조작 조건에 대한 연구)

  • Yim, Sung Sam;Song, Yun Min
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.696-703
    • /
    • 2005
  • The definition of cake is not established for cake filtration, and especially the definition was impossible for the filtration of the floc already sedimented. The definition is proposed with the experimental method named 'filtration-permeation'. The limit of water content which can be achieved with cake filtration of floc was established with the definition of cake. The expression operation of which the purpose is to reduce the water content of pre-formed filter cake is calculated with our 'unified theory on solid-liquid separation' and compared with the experimental results. The importance of expression is analyzed by the calculated whole procedure of cake filtration and expression. The method determining the most effective operational conditions of filter press including the cake discharge and washing time is proposed.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

A Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures (선박 및 해양구조물용 극저온 재료의 기계적 거동 특성)

  • Park, Woong-Sup;Kang, Ki-Yeob;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-199
    • /
    • 2011
  • Austenite stainless steel(ASS), aluminum alloy and nickel steel alloy are the most widely used in many cryogenic applications due to superior mechanical properties at low temperature. The Face-Centered Cubic(FCC) and Hexagonal Close-Packed(HCP) materials are used for the primary and secondary insulation barrier of Liquefied Natural Gas(LNG) carrier tank and various kinds of LNG applications currently. In this study, tensile tests of ASS, aluminum alloy and nickel steel alloy were carried out for the acquisition of quantitative mechanical properties under the cryogenic environment. The range of thermal condition was room temperature to $-163^{\circ}C$ and strain rate range was 0.00016/s to 0.01/s considering the dependencies of temperatures and strain rates. The comprehensive test data were analyzed in terms of the characteristics of mechanical behavior for the development of constitutive equation and its application.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Radial Mode (일래스토메릭 부싱의 반경방향모드 비선형 점탄성 모델연구)

  • 이성범;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.703-708
    • /
    • 2002
  • An elastomeric bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the load applied to the shaft or sleeve and the relative deformation of Elastomeric bushing is nonlinear and exhibits features of viscoelasticity. A load-displacement relation fur elastomeric bushing is important fur dynamic numerical simulations. A boundary value problem for the bushing response leads to the load-displacement relation which requires complex calculations and is hence unsuitable. Therefore, by modifying the constitutive equation for a nonlinear viscoelastic incompressible material developed by Lianis, the data fur the elastomeric bushing material was obtained and this data was used to derive the new load-displacement relation fur radial response of the bushing. After the load relaxation function for the bushing is obtained from the step displacement control test, Pipkin-Rogers model was developed. Solutions were allowed for comparison between the results of Modified Lianis model and those of the proposed model. It is shown that the proposed Pipkin-Rogers model is in very good agreement with Modified Lianis model.

  • PDF

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • Keum Y. T.;Han B. Y.;Wagoner R.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Simulation of concrete shrinkage taking into account aggregate restraint

  • Tangtermsirikul, Somnuk;Nimityongskul, Pichai
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.105-113
    • /
    • 1997
  • This paper proposes a model for simulating concrete shrinkage taking into account aggregate restraint. In the model, concrete is regarded as a two-phase material based on shrinkage property. One is paste phase which undergoes shrinkage. Another is aggregate phase which is much more volumetrically stable. In the concrete, the aggregate phase is considered to restrain the paste shrinkage by particle interaction. Strain compatibility was derived under the assumption that there is no relative macroscopic displacement between both phases. Stresses on both phases were derived based on the shrinking stress of the paste phase and the resisting stress of the aggregate phase. Constitutive relation of paste phase was adopted from the study of Yomeyama, K. et al., and that of the aggregate phase was adopted from the author's particle contact density model. The equation for calculating concrete shrinkage considering aggregate restraint was derived from the equilibrium of the two phases. The concrete shrinkage was found to be affected by the free shrinkage of the paste phase, aggregate content and the stiffness of both phases. The model was then verified to be effective for simulating concrete shrinkage by comparing the predicted results with the autogeneous and drying shrinkage test results on mortar and concrete specimens.

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.