• Title/Summary/Keyword: Constitutive Equation

Search Result 474, Processing Time 0.027 seconds

Microscopic Modeling of Creep Behavior for Soils (지반 크리프 거동의 미시학적 모델링)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.409-413
    • /
    • 2006
  • The accumulated deformation due to the undrained creep causes the general stability problem for the overall soil mass. In this study, the time-dependent constitutive equation, into which a damage law, modified cam clay model, and Perzyna's generalized viscous theory were incorporated, was derived microscopically. The model prediction agreed well with the experimental result including the case of the undrained creep rupture.

  • PDF

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors through the Load-Training (하중 트레이닝을 통한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.700-705
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

  • PDF

Rheological Characterization of Polypropylene/Layered Silicate Nanocomposites Using Integral Constitutive Equations (적분형 구성방정식을 이용한 폴리프로필렌/층상 실리케이트 나노복합재료의 유변학적 특성 분석)

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • Exfoliated nanocomposites of polypropylene/layered silicate were prepared by a melt compounding process using maleic anhydride modified polypropylene (PP-g-MAH) and organoclay. It was found that polypropylene/layered silicate nanocomposites exhibited remarkable reinforcement compared with the pure polypropylene or conventional composite filled with agglomerated organoclay. The polypropylene /layered silicate nanocomposites showed stronger and earlier shear thinning behaviors and outstanding strain hardening behavior than pure polypropylene or other conventional composites in shear and uniaxial elongational flows, respectively. We simulated rheological modeling for the pure polymer matrix and polypropylene/layered silicate nanocomposite in shear and elongational flows using K-BKZ integral constitutive equation. The two types of K-BKZequations have been examined to describe experimental results of shear and uniaxial elongational viscosities of pure polypropylene and polypropylene/layered silicate nanocomposite.

  • PDF

Thermomechanical Behaviors of Shape Memory Alloy Using Finite Element Analysis (유한요소해석을 이용한 형상기억합금의 열적/기계적 거동 연구)

  • ;Scott R. White
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.833-836
    • /
    • 2001
  • The thermomechanical behaviors of the shape memory alloy were conducted through the finite element analysis of ABAQUS with UMAT user subroutine. The unified thermomechanical constitutive equation suggested by Lagoudas was adapted into the UMAT user subroutine to investigate the characteristics of the shape memory alloy. The three cases were solved to investigate the thermomechanical characteristics of the shape memory alloy. The material properties for the analysis were obtained by DSC and DMA techniques. According to the results, the thermomechanical characteristics, such as a shape memory effect and a pseudoelastic effect, could be obtained through the finite element analysis and the analysis results were revealed to agree well with the experimental results. Therefore, the finite element analysis using UMAT user subroutine is one of prominent analysis techniques to investigate the thermomechnical behaviors of the shape memory alloy quantitatively.

  • PDF

Interaction fields based on incompatibility tensor in field theory of plasticity-Part I: Theory-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • This paper proposes an interaction field concept based on the field theory of plasticity. Relative deformation between two arbitrary scales, e.g., macro and micro fields, is defined which can be implemented in the crystal plasticity-based constitutive framework. Differential geometrical quantities responsible for describing dislocations and defects in the interaction field are obtained, based on which dislocation density and incompatibility tensors are further derived. It is shown that the explicit interaction exists in the curvature or incompatibility tensor field, whereas no interaction in the torsion or dislocation density tensor field. General expressions of the interaction fields over multiple scales with more than three scale levels are derived and implemented into the present constitutive equation.

A Densification Model for Mixed Metal Powder under Cold Coompaction (냉간압축하에서 혼합금속분말의 치밀화 모델)

  • 조진호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Finite Element Analysis for Die Compaction Process of Cemented Carbide Tool Parts (초경공구 성형을 위한 금형압축공정)

  • Hyun ChungMin;Kwon YoungSam;Chung SukHwan;Kim MyoungJin;Ha SangYul;Kim KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1140-1151
    • /
    • 2004
  • This paper reports on the finite elements analysis for die compaction process of cemented carbide tool parts. Experimental data were obtained under die compaction and triaxial compression with various loading conditions. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into an explicit finite element program (ABAQUS/Explicit) and implicit finite element program (PMsolver/Compaction-3D) to simulate compaction response of cemented carbide powder during die compaction. For simulation of die compaction, the material parameters for Shima and Oyane model were obtained by uniaxial die compaction test. Explicit finite element results were compared with implicit results for cemented carbide powder.

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors for Repeated Actuations (반복적인 작동을 위한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.373-379
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials (나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링)

  • 윤승채;서민홍;김형섭
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.174-179
    • /
    • 2004
  • The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials (나노재료 입계상의 소성변형에 대한 입계확산크립 모델)

  • 김형섭;오승탁;이재성
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF