• 제목/요약/키워드: Constituent analysis

검색결과 532건 처리시간 0.025초

國內 窯業原料의 基礎的 硏究 (第1報) (Mineralogical Studies on Korean Ceramic Raw Materials. I)

  • 지응업;최상흘;이응상;상기남
    • 대한화학회지
    • /
    • 제8권4호
    • /
    • pp.169-178
    • /
    • 1964
  • 現在 國內에서 使用되고 있는 主要 窯業原料들에 對한 基礎的 data가 不足하므로 이에 國內 主要 窯業工場의 使用量을 基準으로 하여 約 40 種의 鑛物을 試料로 設定하고 그 基礎的 硏究를 하였다. 設定된 試料에 對하여 化學分析, D.T.A.試險, X-ray 廻折試險 및 粒度分析試驗을 行하고 그 結果 및 解析의 一部를 第 1報로서 發表한다. 모든 試料鑛物은 그 試驗結果를 結晶構造的 見地에서 鑛物學的으로 다루어 解析되었는데 特히 本 硏究의 結果 河東白土는 halloysite 라는 設$^{29}$과 一致하였으며 또한 國內 蠟石은 그 主成分 鑛物이 pyrophyllite 質, kaolin 質 및 muscovite 質의 3 者로 分類되어야 한다는 것이 밝혀졌다. 또한 本 第 1報에서 다루지 못한 詩料들, 疑問으로 남은 點들, 電子顯微鏡寫眞 및 光學的 試驗結果는 次報에서 다루기로 한다.

  • PDF

A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect

  • Talebi, Elnaz;Tahir, Mahmood Md.;Zahmatkesh, Farshad;Kueh, Ahmad B.H.
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.661-678
    • /
    • 2015
  • Buckling Restrained Braces (BRB) have been widely used in the construction industry as they utilize the most desirable properties of both constituent materials, i.e., steel and concrete. They present excellent structural qualities such as high load bearing capacity, ductility, energy-absorption capability and good structural fire behaviour. The effects of size and type of filler material in the existed gap at the steel core-concrete interface as well as the element's cross sectional shape, on BRB's fire resistance capacity was investigated in this paper. A nonlinear sequentially-coupled thermal-stress three-dimensional model was presented and validated by experimental results. Variation of the samples was described by three groups containing, the steel cores with the same cross section areas and equal yield strength but different materials (metal and concrete) and sizes for the gap. Responses in terms of temperature distribution, critical temperature, heating elapsed time and contraction level of BRB element were examined. The study showed that the superior fire performance of BRB was obtained by altering the filler material in the gap from metal to concrete as well as by increasing the size of the gap. Also, cylindrical BRB performed better under fire conditions compared to the rectangular cross section.

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory

  • Park, Weon-Tae;Han, Sung-Cheon;Jung, Woo-Young;Lee, Won-Hong
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1239-1259
    • /
    • 2016
  • The modified couple stress-based third-order shear deformation theory is presented for sigmoid functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The present models contain two-constituent material variation through the plate thickness. The equations of motion are derived from Hamilton's energy principle. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression and tension.

낙동강 수역의 붕소 오염원과 분포특성 연구 (A Study for Source and Distribution of Boron in Nakdong River)

  • 이정만;박청길;김철
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.236-241
    • /
    • 2005
  • The purpose of this study is to find out the source(s) and distribution of boron in Nak-dong River. In the year of 2002, the boron has been adopted as a toxic constituent for Korean drinking water standard. In this study, the analytical samples were collected at 11 stations in March, June, September and December 2002. These samples were analyzed by inductively coupled plasma-mass (ICP-MS) method. The recovery, relative standard deviation and method detection limit of the ICP-MS method for boron was $89{\sim}111.3%$, $2.21{\sim}3.81%$ and $5{\mu}g/L$, respectively. The distribution of boron was ranged $65{\sim}155{\mu}g/L$ in March, $26{\sim}125{\mu}g/L$ in June, $22{\sim}140{\mu}g/L$ in September and $50{\sim}162{\mu}g/L$ in December. The higher levels of boron were found at Kum-ho river nearby the industrial complex, which seemed to be greatly affected by domestic sewages and wastewater from the upper streams. Thus, the concentration of boron and that of other components showed strong statistical correlation in this area. In the Nak-dong River, industrial wastewater and domestic sewages is thought to be the sources of boron.

링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉 (Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism)

  • 서진성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF

GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석 (Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology)

  • 박재용;박철휴;곽문규;나성수
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.351-361
    • /
    • 2019
  • Present article deals with the static stability analysis of compositionally graded nanocomposite beams reinforced with graphene oxide powder (GOP) is undertaken once the beam is subjected to an induced force caused by nonuniform magnetic field. The homogenized material properties of the constituent material are approximated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a higher-order refined beam model is incorporated with the dynamic form of the virtual work's principle to derive the partial differential motion equations of the problem. The governing equations are solved via Galerkin's method. The introduced mathematical model is numerically validated presenting a comparison between the results of present work with responses obtained from previous articles. New results for the buckling load of GOP reinforced nanocomposites are presented regarding for different values of magnetic field intensity. Besides, other investigations are performed to show the impacts of other variants, such as slenderness ratio, boundary condition, distribution type and so on, on the critical stability limit of beams made from nanocomposites.

백제시대 흑색마연토기의 산출과 재현연구 (A study on the Occurrence of Paekche Burnished black pottery and their Reproduction)

  • 최석원;이남석;이재황;이현숙;채상정
    • 헤리티지:역사와 과학
    • /
    • 제34권
    • /
    • pp.4-18
    • /
    • 2001
  • Paekche black potteries are earthenwares begun to be produced at the beginning of Paekche Dynasty, around 3-century. They have typical Paekche style. Representative Paekche earthenwares are burnished black pottery, long oval shaped pots and shoulder pots. Among these, burnished black potteries are limited to Paekche in the occurrence site and age. Their numbers are a few. To reproduce black pottery, their compositions were analyzed. As a result of X-Ray analysis, quarts, feldspar, illite, muscovite, and anorthite were found on their surfaces and imsides spinel and vermiculite were found on their surfaces. Since same constituent minerals were found on surfaces and their insides, special other materials were not added to make surface black. With the showing vermiculite, they were made higher than $800^{\circ}C$. As a result of analysis, fine grained clay bad been influenced by the black smoke. Its luster was appeared by polishing with a big flat wooden spoon. The black color was made of smoking when the hot pot taken off from burning oven was covered with the wet pine leaves.