• Title/Summary/Keyword: Constant-sign solutions

Search Result 7, Processing Time 0.018 seconds

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

CONSTANT-SIGN SOLUTIONS OF p-LAPLACIAN TYPE OPERATORS ON TIME SCALES VIA VARIATIONAL METHODS

  • Zhang, Li;Ge, Weigao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1131-1145
    • /
    • 2012
  • The purpose of this paper is to use an appropriate variational framework to discuss the boundary value problem with p-Laplacian type operators $$\{({\alpha}(t,x^{\Delta}(t)))^{\Delta}-a(t){\phi}_p(x^{\sigma}(t))+f({\sigma}(t),x^{\sigma}(t))=0,\;{\Delta}-a.e.\;t{\in}I\\x^{\sigma}(0)=0,\\{\beta}_1x^{\sigma}(1)+{\beta}_2x^{\Delta}({\sigma}(1))=0,$$ where ${\beta}_1$, ${\beta}_2$ > 0, $I=[0,1]^{k^2}$, ${\alpha}({\cdot},x({\cdot}))$ is an operator of $p$-Laplacian type, $\mathbb{T}$ is a time scale. Some sufficient conditions for the existence of constant-sign solutions are obtained.

TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITY

  • Tan, Huixuan;Feng, Hanying;Feng, Xingfang;Du, Yatao
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.75-82
    • /
    • 2014
  • In this paper, we consider the periodic boundary value problem with sign changing nonlinearity $$u^{{\prime}{\prime}{\prime}}+{\rho}^3u=f(t,u),\;t{\in}[0,2{\pi}]$$, subject to the boundary value conditions: $$u^{(i)}(0)=u^{(i)}(2{\pi}),\;i=0,1,2$$, where ${\rho}{\in}(o,{\frac{1}{\sqrt{3}}})$ is a positive constant and f(t, u) is a continuous function. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The interesting point is the nonlinear term f may change sign.

Launch Stage Thermal Analysis on a Mass Varying Satellite Box by Analytical Solutions (해석해를 이용한 질량변화가 있는 위성 부품에 대한 발사시 열해석)

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.163-168
    • /
    • 2003
  • Analytical approach is applied to predict temperature of satellite box under worst hot condition from fairing jettison to separation. The box is tried to solve analytically which is exposed to known environmental heating condition and has internal heating and irradiation to space. For a single thermal mass, governing equation for temperature is simplified to 1st order ordinary differential equation(ODE) by several assumptions. Two cases are considered. The one is for constant mass box and the other is for mass-varying box. Each case has three different analytical solution by sign of constant term in ODE. One analytical solution for constant mass is applied to physical launch stage condition. It is concluded that the present analytical method can be used to quick predict the temperature of a satellite box and check whether a satellite is safe against space environment during launch stage.

  • PDF

Elliptic Integral Solutions of Large Deflection of Reinforcing Fiber Elastica with Circular Wavy Pattern

  • Jung, Jae-Ho;Lee, Kyung-Woo;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.163-169
    • /
    • 2001
  • The solution of two-dimensional deflection of circular wavy reinforcing fiber elastics was obtained for one end clamped boundary under concentrated load condition. The fiber was regarded as a linear elastic material. Wavy shape was described as a combination of half-circular arc smoothly connected each other with constant curvature of all the same magnitude and alternative sign. Also load direction was taken into account. As a result, the solution was expressed in terms of a series of elliptic integrals. These elliptic integrals had two different transformed parameters involved with load value and initial radius of curvature. While we found the exact solutions and expressed them in terms of elliptic integrals, the recursive ignition formulae about the displacement and arc length at each segment of circular section were obtained. Algorithm of determining unknown parameters was established and the profile curve of deflected beam was shown in comparison with initial shape.

  • PDF

Elastica Solution of Large Deformation of Fiber Cantilever with Crimped Shapes (크림프를 가진 섬유 캔틸레버의 대변형의 일래스티카 해)

  • 정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.102-105
    • /
    • 2001
  • In this paper, the solution of two dimensional deflection of circular wavy elastica beam was obtained for one end clamped boundary and concentrated load condition. The beam was regarded as a linear elastic material. Wavy shape was described as a combination of half-circular arc smoothly connected each other with constant curvature of all the same magnitude and alternative sign. Also load direction was taken into account. As a result, the solution was expressed in terms of a series of integral equations. While we found the exact solutions and expressed them in terms of elliptic integrals, the recursive ignition formulae about the displacement and arc length at each segment of circular section were obtained. Algorithm of determining unknown parameters was established and the profile curve of deflected beam was shown compared with initial shape.

  • PDF

A Study on the Neumann-Kelvin Problem of the Wave Resistance (조파저항에서의 Neumann-Kelvin 문제에 대한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 1985
  • The calculation of the resulting fluid motion is an important problem of ship hydrodynamics. For a partially immersed body the condition of constant pressure at the free surface can be linearized. The resulting linear boundary-value problem for the velocity potential is the Neumann-Kelvin problem. The two-dimensional Neumann-Kelvin problem is studied for the half-immersed circular cylinder by Ursell. Maruo introduced a slender body approach to simplify the Neumann-Kelvin problem in such a way that the integral equation which determines the singularity distribution over the hull surface can be solved by a marching procedure of step by step integration starting at bow. In the present pater for the two-dimensional Neumann-Kelvin problem, it has been suggested that any solution of the problem must have singularities in the corners between the body surface and free surface. There can be infinitely many solutions depending on the singularities in the coroners.

  • PDF