• Title/Summary/Keyword: Constant scallop height

Search Result 4, Processing Time 0.036 seconds

Constant Scallop Height Tool Paths and Geodesic Parallels (일정 스켈럽 높이 공구경로와 축지평행선의 관계)

  • Kim Tae-Jung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.127-128
    • /
    • 2006
  • We introduce a novel approach for generating constant scallop height tool paths. We derive a Riemannian metric tensor from curvature tensors of a part surface and a tool surface. Then, we construct geodesic parallels from the newly constructed metric. Those geodesic parallels constitute an asymptotically-correct family of constant scallop height tool paths.

  • PDF

Uniform Scallop Height Tool Path Generation Using CL Surface Deformation (CL면 변형 방법을 이용한 균일한 조도의 공구 경로 생성)

  • Yang Min-Yang;Kim Su-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.895-903
    • /
    • 2005
  • In this paper, we present a cutter location (CL) surface deformation approach for constant scallop height tool path generation from triangular mesh. The triangular mesh model of the stereo lithography (STL) format is offset to the CL surface and then deformed in accordance with the deformation vectors, which are computed by the slope and the curvature of the CL surface. In addition, the tool path which is computed by slicing the deformed CL surface is inversely deformed by those same deformation vectors to a tool path with a constant scallop height. The proposed method is implemented, and a tool path generated by the proposed method is tested by simulation and by numerical control (NC) machining. The scallop height was found to be constant over the entire machined surface, demonstrating much better quality than that of mesh slicing, under the same constraints for machining time.

Continuous Tool-path Generation for High Speed Machining

  • Lee, Eung-Ki;Hong, Won-Pyo;Park, Jong-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.31-36
    • /
    • 2002
  • A continuous tool-path, that is to cut continuously with the minimum number of cutter retractions during the cutting operations, is developed in order to minimise the fluctuation of cutting load and the possibility of chipping on the cutting edge in HSM (high-speed machining). This algorithm begins with the offset procedure along the boundary curve of the sculptured surface being machined. In the of offset procedure, the offset distance is determined such that the scallop height maintains a constant roughness to ensure higher levels of efficiency and quality in high-speed machining. Then, the continuous path is generated as a kind of the diagonal curve between the offset curves. This path strategy is able to connect to neighbor paths without cutter retractions. Therefore, the minimum tool retraction tool-path can be generated And, it allows the sculptured surface incorporating both steep and flat areas to be high-speed machined.