• Title/Summary/Keyword: Constant current

Search Result 2,601, Processing Time 0.031 seconds

Coupled Operation of the Lake Youngsan, Yeongam and Kumho for the Flood Stage Control in the Downstream of the Youngsan River (영산강 하류부 홍수위 조절을 위한 영산호-영암호-금호호 연계운영)

  • Kim, Dae Geun;Kim, Dong Ok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.277-284
    • /
    • 2010
  • To examine how the width of connecting channels, the width of the Kumho lock gate, and the opening/shutting criteria of the Yeongam connecting channel lock gate affect the flood stage of Lake Yeongsan, Lake Yeongam, and Lake Kumho, located in the lower reaches of the Yeongsan River, unsteady flood routing was performed by connecting the three lakes into a single interlinked system. The coupled operation of the three lakes was found to have little effect when the widths of the lock gates and the Yeongam and Kumho connecting channels are set at the current level. The most effective way to lower the water level in Lake Yeongsan was to widen the Yeongam connecting channel, but this caused the water level in Lake Yeongam to rise. To lower the increased water level in Lake Yeongam by utilizing the water storage capacity of Lake Kumho, it was necessary to widen both the Kumho lock gate and the Kumho connecting channel. It was found that the optimum opening/shutting criterion for the Yeongam connecting channel lock gate is approximately EL.(+)0.8 m under the simulated conditions used in this study and the criterion allows of maximal lowering of the water levels in Lake Yeongam and Lake Kumho while maintaining a near-constant water level in Lake Yeongsan.

Investigation of conservation state on the waxed volumes of annals of the Joseon Dynasty (조선왕조실록 밀납본의 보존상태 조사)

  • Jeong, So-Young;Lee, Hye-Yun;Chung, Yong-Jae;Hong, Jung-Ki;Eom, Doo-Sung
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.119-132
    • /
    • 2004
  • Annals of the Joseon Dynasty is the authentic record of the historical facts and events taken place throughout the entire period of 472 years(25 generations, 1392~1863)described in a chronological order. The tremendous volume of the records contains the factual events taken place in almost all the fields of the Joseon Dynasty ranging from politics, economy to history of the dynasty. Not only because of its affluent contents but also with the precision of its records, it was designated as the National Treasure No. 151 in1973 by the Korean government and also registered as the Memory of the World by UNESCO in October 1997.This study is to report a exhaustive investigation results on the conservation state of annals of the Joseon Dynasty, especially Mt. Jeongjoksan edition, under the storage of the Kyujanggak in order to obtain the current condition, and thereby to estimate the any deterioration of the waxed volumes in the future. According to results of the investigation, we are going to verify damage causes of annals of the Joseon Dynasty, and to consider scientific conservation methods for the permanent preservation of invaluable cultural heritage. The major problem with the preservation of annals has arisen particularly from the deterioration of the waxed volumes of the Mt. Jeongjoksan edition. In order to provide for the counter measures for this problem, we have conducted twice investigations(first :1998~1999, second : 2003) to the internal and external conditions of waxed volumes(Annals of King Taejo~Annals of King Myeongjong).The result of the investigation has indicated that the paper quality of the some of the waxed volumes (Annals of King Taejong~Annals of King Sejong) is cracked and folded and the pages are imbedded to each other due to the hardened or congealed wax on the paper. Some of the pages are even getting moldy. And in order to detect as to whether“ there has been any deterioration progressed to the waxed books in the modern storage facility of the Kyujanggak equipped with constant temperature and humidity condition, the first investigation(1998~1999) and the second investigation(2003) have recorded the values of acidity, whiteness and moisture rate of the waxed paper, reporting an observation that there has been no difference on the measuring items. This indicates that no virtual deterioration has been progressed so far to the waxed volumes preserved in the Kyujanggak. Also, except for the causes of deterioration to the paper by insects and microorganisms, the major cause for the paper damage seems to the change of moisture of the paper caused from the alteration of the temperature and humidity of the storage environment. With this understanding in mind, we have conducted an environmental investigation on the three selected points of the storage in the aspects of the temperature, humidity, air current, $CO_2$,HCHO, and $SO_2$.It has been observed that the temperature stood at $16.9^{\circ}C~20.2^{\circ}C$ and the humidity was stable between 53%~56% during the period of the investigation. The concentration of the carbon monoxide and carbon dioxide of the storage were very similar to those in the air. These data lead to presume that there is no problem in the aspect of carbon oxidization. But the concentration of sulfur dioxide, hydrogen sulfide and formaldehyde of the storage were detected a little higher than those of standard. Therefore, we consider that it is necessary to ventilate the internal air of the store room by means of operating air purification devices.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

Future Development Strategies for KODISA Journals : Overview of 2017 and Strategic Plans for the Future (KODISA 학술지 성장전략: 2017 개관 및 미래 성장개요)

  • Hwang, Hee-Joong;Shin, Dong-Jin;Lee, Jung-Wan;Kim, Dong-Ho;Lee, Jong-Ho;Kim, Byung-Goo;Kim, Tae-Joong;Lee, Yong-Ki;Suh, Eung-Kyo;Kang, Min-Soo;Seo, Won-Jae;Kim, Jong-Jin;Zhang, Fan;Su, Shuai;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.16 no.5
    • /
    • pp.83-90
    • /
    • 2018
  • Purpose - Journals of Korea Distribution Science Association (KODISA) made great efforts in responding to the constant shifts in academic paradigms and in producing synergetic effects among KODISA journals to achieve the goal of maintaining their status in the world's reputable scholarly journals. The aim of this study is to analyze the current practice and performance of KODISA journals and develop strategies that will continuously meet and respond to the changes and success in the future. Research design, data, and methodology - This is a case study, an analytical approach, which focuses on analyzing current and previous strategies, practices, and performances of the four major journals of KODISA and the association. The organizational structure, including election and terms of KODISA officers, new membership, and members of editorial board, is discussed and analyzed. The citation, submission, publication, and rejection rates of all four journals are examined, and the progress, including the status of indexing of each journal, is discussed. Results - The analysis indicates that KODISA has significantly invested its resources into improving its journals and attracting new members. The analysis also shows the strategy of the organizational structure, which includes election and terms of officers and editorial board members that implemented over the years, was successful. Both Journal of Distribution Science (JDS) and Journal of Finance, Economics, and Business (JAFEB) are indexed in SCOPUS, with East Asian Journal of Business Management (EAJBM) in the final stage of the SCOPUS indexing evaluation, and International Journal of Industrial Distribution and Business (IJIDB) will complete and submit their indexing evaluation materials to SCOPUS this summer. Conclusions - The success and progress of KODISA and its journals clearly support the need for continuous development, analysis, revision, and implementation of strategies. Based on the analysis, conducting the annual performance reviews of the association and its journals and planning and strategizing based on the reviews since 2011 have greatly contributed to the overall success. In terms of meeting the short term strategy, KODISA has to continue developing relationships with relevant and appropriate scholarly/academic associations to expand the scope of its business, establishing independence of each journal and its respective procedures and practices and improving the quality of the journals and their publications through KODISA's international conferences.

Nano-mechanical Properties of Nanocrystal of HfO2 Thin Films for Various Oxygen Gas Flows and Annealing Temperatures (RF Sputtering의 증착 조건에 따른 HfO2 박막의 Nanocrystal에 의한 Nano-Mechanics 특성 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kwon, Ku-Eun;Kim, Min-Suk;Eum, Seoung-Hyun;Jung, Hyun-Jean;Jo, Yong-Seok;Park, Seung-Ho;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.273-278
    • /
    • 2012
  • Over the last decade, the hafnium-based gate dielectric materials have been studied for many application fields. Because these materials had excellent behaviors for suppressing the quantum-mechanical tunneling through the thinner dielectric layer with higher dielectric constant (high-K) than $SiO_2$ gate oxides. Although high-K materials compensated the deterioration of electrical properties for decreasing the thickness of dielectric layer in MOSFET structure, their nano-mechanical properties of $HfO_2$ thin film features were hardly known. Thus, we examined nano-mechanical properties of the Hafnium oxide ($HfO_2$) thin film in order to optimize the gate dielectric layer. The $HfO_2$ thin films were deposited by rf magnetron sputter using hafnium (99.99%) target according to various oxygen gas flows. After deposition, the $HfO_2$ thin films were annealed after annealing at $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for 20 min in nitrogen ambient. From the results, the current density of $HfO_2$ thin film for 8 sccm oxygen gas flow became better performance with increasing annealing temperature. The nano-indenter and Weibull distribution were measured by a quantitative calculation of the thin film stress. The $HfO_2$ thin film after annealing at $400^{\circ}C$ had tensile stress. However, the $HfO_2$ thin film with increasing the annealing temperature up to $800^{\circ}C$ had changed compressive stress. This could be due to the nanocrystal of the $HfO_2$ thin film. In particular, the $HfO_2$ thin film after annealing at $400^{\circ}C$ had lower tensile stress, such as 5.35 GPa for the oxygen gas flow of 4 sccm and 5.54 GPa for the oxygen gas flow of 8 sccm. While the $HfO_2$ thin film after annealing at $800^{\circ}C$ had increased the stress value, such as 9.09 GPa for the oxygen gas flow of 4 sccm and 8.17 GPa for the oxygen gas flow of 8 sccm. From these results, the temperature dependence of stress state of $HfO_2$ thin films were understood.

Characteristics of the ( Pb, La ) $TiO_3$ Thin Films with Pb/La Compositions (Pb/La 조성에 따른 ( Pb, La ) $TiO_3$ 박막의 특성 변화)

  • Kang, Seong-Jun;Joung, Yang-Hee;Yoon, Yung-Sup
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.29-37
    • /
    • 1999
  • In this study, we have prepared PLT thin films having various La concentrations by using sol-gel method and studied on the effect of La concentration on the electrical properties of PLT thin films. As the La concentration increases from 5mol% to 28mol%, the dielectric constant at 10kHz increases from 428 to 761, while the loss tangent decreases from 0.063 to 0.024. Also, the leakage current density at 150kV/cm has a tendency to decrease from 6.96${\mu}A/cm^2$ to 0.79${\mu}A/cm^2$. In the result of hysteresis loops of PLT thin films, the remanent polariation and the coercive field decrease from 9.55${\mu}C/cm^2$ to 1.10${\mu}C/cm^2$ and from 46.4kV/cm to 13.7kV/cm, respectively. With the result of the fatigue test on the PLT thin films, we have found that the fatigue properties are improved remarkably as the La concentration increases from 5 mol% to 28mol%. In particular, the PLT28) has paraelectric phase and its charge storage clensity and leakage current density at 5V are 134fC/${\mu}cm^2$ and 1.01${\mu}A/cm^2$, respectively. The remanent polarization and coercive field of the PLT(10) film are 6.96${\mu}C/cm^2$ and 40.2kV/cm, respectively. After applying of $10^9$ square pulses with ${\pm}5V$, the remanent polarilzation of the PLT(10) film decreases about 20% from the initial state. In the results, we conclude that the 10mol% and the 28mol% La doped PLT thin films are very suitable for the capacitor dielectrics of new generation of DRAM and NVFRAM respecitively.

  • PDF

A Study on the Effective Half-life after the High Dose Radioactive Iodine (131I) Therapy for Thyroid Cancer Patients (갑상선암 환자에서 고용량 방사성요오드 치료 후 유효반감기에 대한 연구)

  • Kim, Seongcheol;Gwon, DaYeong;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.597-603
    • /
    • 2017
  • High-dose $^{131}I$ therapy has been generally carried out to remove remaining thyroid tissue or to cure metastasize lesion of patients who received full thyroidectomy due to differentiated thyroid cancers. In case high-dose $^{131}I$ therapy is carried out for a patient, the patient should be hospitalized being isolated for a certain period in order to restrict the amount of exposure to radiation of people at large from the patient within the limit of a level of radiation. Effective half-life is an important value to calculate how family members are exposed to radiation from a patient or to decide the period of isolation of the patient from the family members. Therefore, in this study we calculated the effective decay constant, effective half-life and period of isolation of high-dose $^{131}I$ therapy patient using NM670 SPECT/CT. As a result of carrying out this study, the effective half-life of high-dose $^{131}I$ therapy patients was derived and the time to reach the discharge level of 1.2 GBq was confirmed. When they were compared with each other in each of curative doses, the effective half-life did not have significant difference, but the time when the level of radiation remaining in the interior of the body to reach the criteria of isolation and discharge showed significant difference and it could be confirmed that the higher the curative dose the longer the period of isolation becomes. When the effective half-lives in each type of preparation were compared with each other, they did not show significant difference. However, When the times to reach the level of radiation that is the criteria of isolation and discharge in each type of preparations, they showed significant difference. The cause of the shortening of the isolation period for rhTSH patients group is decided to be low curative dose. Accordingly, if the current national health insurance (the insurance is applied to using of rhTSH in 3.7 GBq or lower) is maintained, while discerning them in each of types of preparation, we would be able to discharge patients at the time earlier than the current period of isolation (2 nights and 3 days).

Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics (Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상)

  • Son, Hee-Geon;Yang, Jung-Il;Cho, Dong-Kyu;Woo, Sang-Hyun;Lee, Dong-Hee;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.