• Title/Summary/Keyword: Constant Temperature Chamber

Search Result 215, Processing Time 0.032 seconds

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

Application of an Infrared Drying to Drying Process for Red Pepper (고추의 건조(乾燥) 공정(工程)에서 적외선(赤外線) 건조법(乾燥法)의 활용(活用)에 관한 연구(硏究))

  • Koh, H.K.;Cho, Y.J.;Kang, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.230-243
    • /
    • 1990
  • This study was conducted to investigate the possibility of application of an infrared drying to drying process for red pepper. The performance of seramic heaters and the variation of temperature and moisture content of red pepper were analyzed during an infrared drying of red peppers. Also, the quality of dried red pepper was analyzed. The following results were obtained from this study. 1. The surface temperature of infrared heaters and the rising time required for steady state were mainly affected by electrical power consumed. 2. The heat energy required for heating red pepper was proposed to be calculated by the equation in terms of enthalpy of air and net heat flux by infrared heater in a drying chamber. The statistical model for net heat flux was developed. 3. The performance of the infrared heater used for heating red pepper was much affected by the distance of radiation, and the difference of temperatures appeared between the radiated surface and the inside of red pepper. 4. Electrical capacity of the infrared heater had a significant effect on the heating of red pepper. However, the effect of shape of heater on heating was not significant. 5. The variation of temperature of red pepper largely appeared in the range of 30 to 60% (db) in moisture content. The temperature of red pepper was almost constant at low moisture content. 6. The temperature of red pepper and heating time had significant effects on the quality for radiant heating. 7. When the electrical capacity of infrared heater and the distance of radiation are carefully designed in a dryer with the insulated drying chamber, infrared drying might be very effective in red pepper drying.

  • PDF

An Experimental Study on Applying Heat Pump System to Facility Horticulture House (히트펌프 시스템의 시설원예 적용에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • As the results of analysis that are applying a heat pump using underground water as heat source of facility horticulture house, temperature change in house, growth of cultivated plants and the crop characteristic, the conclusion can be acquired as follows. It was possible to maintain the chamber temperature through operating heat pump with setting goal temperature at $16^{\circ}C$ and temperature variation at ${\pm}3^{\circ}C$. And cooling and heating coefficient of performance in heat pump system are different from setting room temperature and operation condition of equipment, totally in case that the setting temperature in house is low, the coefficient of performance and the in case that temperature departure is low. In case that the house does not heated, the result of the growth characteristic of cucumber planted last 50days is that cucumber grown in house equipped with heat pump is the most favorable growth characteristic due to maintaining a constant room temperature. After 90 days, the quantity and weight cucumber harvested in each house are averagely 9.8%, 13.1% increase and more heavy weight respectively. So it is researched that crop characteristic is superior.

An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage (재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

Performance Characteristics of Flooded Type Evaporator for Seawater Cooling System with Heat Source Temperature of Mid-year (중간기 열원수 온도에 따른 만액식 해수냉각시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Lee, Jeong-Mok;Kang, In-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • The purpose of this study is to investigate the performance characteristics of seawater cooling system for a fishing vessel. The circulation amount of refrigerant, condensation capacity, evaporation capacity, compression work and coefficient of performance(COP) were analyzed as the heat source temperature changed. The experimental setup consisted of an open-type compressor, a shell&tube type condenser, an evaporator and an expansion valve. The heat source was controlled by a constant temperature chamber. The main results of this study are summarized as follows. The condensation capacity increased with increasing heat source temperature, and it was confirmed that the effect of circulating amount of refrigerant was dominant. The amount of heat for vaporization was almost constant even though the temperature of the heat source increased. On the other hand, the compression power was increased. This is because the compression ratio increases as the condensation pressure, the enthalpy difference between inlet and outlet, the amount of circulating refrigerant increases. The performance coefficient of this system showed a tendency decreasing with increasing heat source temperature. Therefore, the basic data of the seawater cooling system for the maintenance of the catch line of the shore fishing boats was acquired through this study, and it is considered that it will be sufficient for the actual design.

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Properties of Aggregate (잔골재 특성에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park Do-Kyong;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.73-77
    • /
    • 2006
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidify. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. As a result Strain Rate of Drying Shrinkage of concrete was measured to increase by average $10{\times}10^{-5}$ in proportion to additional 4% increase in fine aggregate ratio, when water/cement ratio constant. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. 6. Strain Rate of Drying Shrinkage in sea sand concrete increased $10%{\sim}15%$ higher than measured when in river sand. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as fellows. The coefficient of correlation of Drying Shrinkage in concrete was over 90%.

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Experimental Verification of DC/DC Converter Power Loss Model in Severe Temperature Condition (가혹온도조건에서 DC/DC 변환기 전력손실모델의 실험적 검증)

  • Noh, Myounggyu;Kim, Sunyoung;Park, Young-Woo;Jung, Doo-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.455-461
    • /
    • 2015
  • This paper deals with an experimental verification of a temperature-dependent power loss model of a DC/DC converter in severe temperature conditions. The power loss of a DC/DC converter is obtained by summing the losses by the components constituting the converter including switching elements, diodes, inductors, and capacitors. MIL-STD-810F stipulates that any electronic devices must be operable in the temperature ranging from $-50^{\circ}C$ to $70^{\circ}C$. We summarized the temperature-dependent loss models for the converter components. A SEPIC-type converter is designed and built as a target. Using a constant-temperature chamber, a test rig is set up to measure the power loss of the converter. The experimental results confirm the validity of the loss model within 4.5% error. The model can be useful to predict the efficiency of the converter at the operating temperature, and to provide guidelines in order to improve the efficiency.

N2O Emissions from Agricultural Soils and Their Characteristics (밭 토양으로부터 아질산(N2O기체의 배출량 측정과 배출특성)

  • 김득수;오진만
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.529-540
    • /
    • 2003
  • A closed chamber system was used for measuring $N_2$0 fluxes from an agriculturally managed upland soil in Kunsan during the growing season from May to July 2002. It is known that soil is one dominant source of atmospheric $N_2$O, contributing to about 57% (9 Tg y $^{-1}$ ) of the total annual global emission. Hence, its increasing emissions and concentrations are largely associated with agricultural activities. In order to elucidate characteristics of soil nitrogen emissions from intensively managed agricultural soils and to understand the roles of soil parameters (soil moisture, soil pH, soil temperature, and soil nitrogen) in the gas emission, $N_2$O soil emissions were measured at every hour during the experimental period (21 days). Soil $N_2$O fluxes were calculated based on changes of $N_2$O concentrations measured inside a closed chamber at every hour. The analysis of $N_2$O was made by using a Gas Chromatography (equipped with Electron Capture Detector). Soil parameters at sampling plots were also analyzed. Monthly averaged $N_2$O fluxes during May, June, and July were 0.14, 0.05, and 0.13 mg-$N_2$O m$^{-2}$ h$^{-1}$ , respectively. Soil temperature and soil pH did not significantly vary over the experimental period; soil temperatures ranged from 12∼$25^{\circ}C$, and soil pH ranged 4.56∼4.75. However, soil moisture varied significantly from 32% to 56% in WFPS. Relationships between soil parameters and $N_2$O fluxes exhibited positive linear relationships. Strong positive correlation ($R^2$ = 0.57, P< 0.0001) was found between $N_2$O flux and sil moisture. It suggests that soil moisture has affected strongly soil $N_2$O emissions during the experimental periods, while other parameters have remained relatively at constant levels. $N_2$O flux from agricultural soils was significant and should be taken account for the national emission inventory.

Gas Effect at High Temperature on the Supersonic Nozzle Conception

  • Boun-jad, Mohamed;Zebbiche, Toufik;Allali, Abderrazak
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.82-90
    • /
    • 2017
  • The aim of this work is to develop a new computational program to determine the effect of using the gas of propulsion of combustion chamber at high temperature on the shape of the two-dimensional Minimum Length Nozzle giving a uniform and parallel flow at the exit section using the method of characteristics. The selected gases are $H_2$, $O_2$, $N_2$, CO, $CO_2$, $H_2O$, $NH_3$, $CH_4$ and air. All design parameters depend on the stagnation temperature, the exit Mach number and the used gas. The specific heat at constant pressure varies with the temperature and the selected gas. The gas is still considered as perfect. It is calorically imperfect and thermally perfect below the threshold of dissociation of molecules. A error calculation between the parameters of different gases with air is done in this case for purposes of comparison. Endless forms of nozzles may be found based on the choise of $T_0$, $M_E$ and the selected gas. For nozzles delivering same exit Mach number with the same stagnation temperature, we can choose the right gas for aerospace manufacturing rockets, missiles and supersonic aircraft and for supersonic blowers as needed in settings conception.