• 제목/요약/키워드: Constant Temperature

검색결과 5,121건 처리시간 0.032초

$(Pb, La)TiO_3$ 세라믹스의 소결 거동 및 유전.초전 특성 (Sintering Behavior, Dielectric and Pyroelectric Properties of $(Pb, La)TiO_3$ Ceramics)

  • 최동구;최시경
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.841-848
    • /
    • 1994
  • The sintering behavior of La-modified PbTiO3 ceramics was investigated in order to improve the poor sinterability of PbTiO3. Addition of La improved the sinterability. It was confirmed that this improvement was due to the decrease in tetragonality ratio c/a of crystal lattice. The variations of dielectric constant and pyroelectric coefficient were measured with temperature. It was observed that with the increase of La content, Curie temperature decreased and dielectric constant at room temperature increased. La-modified PbTiO3 ceramics had smaller pyroelectric figure of merits than those of pyroelectric materials in use. The effects of grain size on dielectric and pyroelectric properties were also investigated. The change of grain size had effect on maximum dielectric constant and pyroelectric coefficient, but is had little effect on pyroelectric figure of merit at room temperature. The closer examination near ferro-paraelectric phase transition temperature revealed that the behavior of phase transition approached a more relaxor character with the increase of La content and the decrease of grain size.

  • PDF

정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구 (A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

대류방식을 이용한 열유속센서의 검정에 관한 연구 (A Study on Calibration of Heat Flux Sensor by using Convective Heat Transfer)

  • 양훈철;송철화;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1358-1363
    • /
    • 2004
  • The objective of this work is to propose calibration facility in which a thin film type heat flux sensor can be calibrated under convective flow condition by using a small wind tunnel with the constant temperature plate condition. A small wind tunnel has been built to produce a boundary layer shear flow above a constant temperature copper plate. 12-independent copper blocks, thin film heaters, insulators and temperature controllers were used to keep the temperature of flat plate constant at a specified temperature. Three commercial thin film-type heat flux sensors were tested. Convective calibrations of these gages were performed over the available heat flux range of $1.4{\sim}2.5kW/m^2$. The uncertainty in the heat flux measurements in the convective-type heat flux calibration facility was ${\pm}2.07%$. Non-dimensional sensitivity is proposed to compare the sensitivity calibrated by manufacturer and that of experiment conducted in this study.

  • PDF

INVESTIGATION OF SOOT OXIDATION CHARACTERISTICS IN A SIMULATED DIESEL PARTICULATE FILTER

  • Lee, H.S.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.261-267
    • /
    • 2006
  • Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Carbon oxidation characteristics were investigated by temperature programmed oxidation(TPO) method as well as constant temperature oxidation(CTO) with a flow reactor including porous bed. The activation energy of carbon oxidation was increasing with temperature and had two different constant values in the early and the later stage of the oxidation process respectively in TPO experiment. Kinetic constants were derived and the reaction mechanisms were assumed from the experimental results and a simple reaction scheme was proposed, which approximately predicted the overall oxidation process in TPO as well as CTO.

STS 304 중공 원통의 물성치 변화가 비정상 열전도에 미치는 영향 (The Effects of the STS 304 Hollow Cylinder Property Variations on the Non-Steady Heat Conduction)

  • 이상철;최현근;서종수;정효민;정한식
    • 동력기계공학회지
    • /
    • 제8권2호
    • /
    • pp.39-44
    • /
    • 2004
  • The effects of the STS 304 hollow cylinder property variations on the non-steady heat conduction are considered in this paper. In the non steady state, the specific heat and conductivity are depended on the temperature variations, and these properties affect to the governing equation on heat conduction. But the most of numerical analysis on heat conduction is assumed to constant properties which is conductivity and specific heat. Assuming that the properties are reacted sensitively, the numerical results can have the difference of between constant properties with non constant properties. The main parameters are specific heat and conductivity. The temperature distributions of the STS 304 hollow cylinder became in steady state after 4 minutes in case of the constant properties. As the conductivity is varied with temperature, the temperature distributions became in steady state after 15 minutes. Therefore, a numerical analysis of the non steady state heat transfer is so important in case of varying temperature.

  • PDF

유속에 따른 열선의 과열비 조정을 통한 열선유속계의 감도향상에 관한 연구 (Sensitivity Enhancement of a Hot-Wire Anemometer by Changing Overheat Ratio with Velocity)

  • 이신표;고상근
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2678-2689
    • /
    • 1995
  • In this study, a new hot-wire anemometer which has greater sensitivity than that of a constant temperature anemometer (CTA) was proposed. In contrast to CTA, the wire working resistance of the new anemometer increases with flow velocity, that is, the operating mode of the wire becomes variable temperature. The variable temperature anemometer(VTA) was made by substituting a voltage controlled variable resistor such as photoconductive cell or transistor for one of the resistors in the bridge. By positively feeding back the bridge top signal to the input side of these electronic components, the wire overheat ratio could be increased with velocity automatically. Static response analyses of the VTA, constant voltage anemometer (CVA) and CTA were made in detail and calibration experiments were performed to validate the proposed operating principle. The wire operating resistance of the CVA decreases with velocity and this leads to lower sensitivity than that of a CTA. But the sensitivity of the newly proposed VTA is superior to that of a CTA, since the wire overheat ratio increases with velocity. Consequently, it is found that the major factor that is responsible for large sensitivity of a VTA is not the working resistance itself but the change of the wire working resistance with velocity.

고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구 (A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

보강제 변화에 따른 실리콘 고무의 정전기 열화 특성에 관한 연구 (A Study on Electrostatic Degradation Properties of Silicone Rubber due to Reinforcing Agent)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제28권2호
    • /
    • pp.120-125
    • /
    • 2015
  • In this study, we have come to the following conclusions regarding to the electrification properties (electrostatic electrification voltage and electrification relaxation time) of electrostatics in the three type of specimen (size: $4cm{\times}4cm{\times}0.103cm$) of silicone rubber which is mixed with the ATH (Aluminium Trihydrate(Al($OH_3$)) of 30 phr, 60 phr, 120 phr as reinforcing filler. The electrification properties of electrostatics were measured for the different mixing ratio of ATH with the applied voltage of DC 10 kV at the temperature range of $10^{\circ}C{\sim}30^{\circ}C$ and humidity range of 60%~80%. When the temperature remained constant, the electrical resistance decreased as the humidity increasing in the range of 60%, 70%, 80%. In contrast, when the humidity remained constant, the electrical resistance increased as the temperature increasing in the range of $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$. Regarding these results, may be it is because the absorption of O-H molecule appeared in the silicone specimen. It was confirmed that when the temperature remained constant, the electrification relaxation time decreased as the humidity increased. In contrast, when the humidity remained constant, the electrification relaxation time increased as the temperature increased.

항온챔버에서 히트펌프 실외기의 성능을 평가하는 실제 운전 (Actual operation characteristics to evaluate the performance of heat pump outdoor unit in the constant temperature chamber)

  • 김종열
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.123-128
    • /
    • 2022
  • 에너지를 절약하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있으며, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절과 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연 상태와 동일한 조건에서 실험할 수 있는 항온챔버를 구축하였다. 항온챔버 내에 설치된 히트펌프의 실외기에 자연 상태와 같은 환경을 제공하여 실험하였으며, 그 결과 외기온도가 낮을수록 히트펌프의 효율은 낮으며, 히트펌프 시스템의 운전이 안정화 상태에 도달하는 시간은 외기온도가 낮을수록 길어지는 것을 확인하였다.

공랭식 변유량 냉매 냉동기를 적용한 수조 온도의 정밀 제어 (Precision Control of Water Bath Temperature using Air Cooled Variable Refrigerant Flow Chiller)

  • 정광주;김영일
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.27-34
    • /
    • 2018
  • This study compared constant water bath performances of conventional water-cooled refrigerator and electric heater with an air-cooled VRF chiller and electric heater equipped with optimal control algorithm. In heating mode, the air cooled VRF chiller and electric heater combination reduced the set temperature arrival time by an average of 42 minutes, and energy was also reduced by 18%. In cooling mode, the two systems took 70 minutes to reach the set temperature and showed no difference. Energy was reduced by 33.5% with the new system. For constant temperature maintaining experiment, after reaching the set temperature of $15^{\circ}C$, $20^{\circ}C$ and $22^{\circ}C$, temperature deviations were all in the range of $-0.2^{\circ}C$ to $+0.1^{\circ}C$. Energy was reduced by an average of 84.9%. Through this study, possibility of precise temperature control by an air cooled VRF chiller system was confirmed.