• Title/Summary/Keyword: Constant Pressure Model

Search Result 410, Processing Time 0.023 seconds

A Study on the Flame Temperature Measurement of the Transiently Propagating Flame by using Platinum-Hot-Wire-Resistance-Thermometry (열선백금저항선을 이용한 과도적 전파화염의 화염온도측정에 관한 연구)

  • 정인석;조경국;황상순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.94-101
    • /
    • 1985
  • The flame temperature of LPG-air premixture flame was measured by extrapolation of limiting case corresponding to the infinitely thin diameter of Platinum-resistance-hot-wire. LPG-air premixture flame, initially under atmospheric pressure and room temperature, propagates downward from top of the model combustion chamber maintained at constant pressure through the whole combustion process. Analytical calculation technique was also applied to determine full temperature history or spatial temperature distribution from flame reaction zone to burnt gas region.

  • PDF

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole (부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

Speed Control of an Overcentered Variable-Displacement Hydraulic Motor on a Constant Pressure Network (일정 압력원에 연결된 가변유압모터의 속도제어)

  • 김철수;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.272-276
    • /
    • 1996
  • This study deals with the speed control of an overcentered variable-displacement hydraulic motor on a constant pressure network, which is noted for its high system efficiency fast dynamic response and energy recovery capability. The speed control characteristics of the conventional cascade PI controller are largely affected by load-torque disturbances. To obtain robust speed control despite torque disturbances, the load torque is estimated by an observer based on a mathematical model and compensated for by a feedforward loop. It is shown by experiment that robust speed control may be obtained with the proposed controller. The experimental data agree fairly well with the theoretical analysis.

  • PDF

The Effect of Oil Supply Pressure on the Performance of Vapor Cavitated Short Squeeze Film Dampers (증기 공동현상이 발생하는 무한 소폭 스퀴즈 필름 댐퍼 성능과 오일 공급압력의 영향)

  • Jung, Si-Young
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.147-153
    • /
    • 2008
  • The effect of oil supply pressure on the performance of vapor cavitated short squeeze film dampers is examined. Vapor cavitation is characterized by film rupture occurring as a result of evaporating oils. The pressure of vapor cavity in the film is almost zero in absolute pressure and nearly constant. Pan's model about the shape of vapor cavity is utilized for studying the effect of vapor cavitation on the damping capability of a short squeeze film damper. As the level of oil supply pressure is increasing, vapor cavitation is suppressed so that the direct damping coefficient increases and the cross coupled damping coefficient decreases. Futhermore, the analysis of the unbalance responses of a rigid rotor supported on cavitated squeeze film dampers shows that a significant reduction in rotor amplitude and force transmissibility is possible by controlling the oil supply pressure into short squeeze film dampers.

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Effect of Air Admission on Pressure Pulsation in a Francis Turbine (급기가 프란시스 수차의 수압 맥동에 미치는 영향)

  • Jeon, Yunheung;Park, Sihoon;Choi, Hansu;Park, Jungwan
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.9-15
    • /
    • 2014
  • In this study pressure and shaft torque pulsation were measured with variation of head and flow during the model test for a 15 MW Francis Turbine. Pressure pulsations were measured at the inlet of the spiral casing and 4 points in the cone of the diffuser and shaft torque pulsation at the upper position of the turbine. The maximum amplitude of pressure pulsation appeared 2.03% of the maximum rated head with the frequency of 25% of the rated revolution and at the guide vane opening of $10^{\circ}$. Shaft torque pulsation appeared 0.01% of the rated shaft torque, fairly low value. Air was admitted through the cone and pressure pulsation gradually decreased with increase of air flow and kept nearly constant after 5% of the rated flow. A new Francis turbine of which specific speed is 115 m-kW had been designed to rehabilitate the old one and the model test was performed at EPFL. The commercial code, STAR-$CCM^+$ was used for numerical simulation of flow.

Isolated Working Canine Heart Perfusion Apparatus for Evaluation of Myocardial Protection Methods (심장기능 평가를 위한 견 적출심장 관류장치의 설계)

  • 이종국
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.246-253
    • /
    • 1988
  • An in vitro model providing with a recirculating perfusion apparatus using an isolated canine heart and its autogenous blood, which was prepared for study of myocardial protection method. This apparatus was easily used by quick connect system and maintained well heart function for about 2 hours. The Langendorff perfusion was initiated for a 10 minute period by introducing perfusate at 37` into the aorta from aortic reservoir located 100 cm above the heart. The isolated perfused working canine heart model was a left heart preparation in which oxygenated perfusion medium [at 37K] entered the cannulated left atrium at a constant flow rate [900ml/ min] under 20 mmHg overflow system and was spontaneously ejected[no electrical pacing] via an cannula against a hydrostatic pressure of 80 cm H2O. During this working period, various indices of cardiac function were measured. The cardiac functions were stable for over 2 hours with perfusion of Krebs-Henseleit solution and autologous blood[1:1] mixture in volume and maintained heart rate ]]3-122/bpm peak systolic pressure 109-113 mmHg, cardiac output 900 ml / min and left atrial mean pressure 8-9 mmHg. In this model, the efficiency of myocardia] protection could be easily measured by means of functional, enzymatic, biochemical and ultrastructural assessment. And also, we believe this model to be a useful assessment screening model of recovery state after long duration of myocardial preservation of donor heart without difficult transplantation procedures.

  • PDF

A Study on the Design and Modeling of PWM Fuel Metering Unit for Miniature Turbo Engines (초소형 터보엔진용 PWM 연료조절장치의 설계 및 모델링에 관한 연구)

  • Joo Sang-Hyun;Choi Ho-Jin;Park Jong-Seung;Lim Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • A fuel metering unit using PWM(Pulse Width Modulated) solenoid valve has some advantages such as low cost, small size and simple structure. The mathematical model and its experimental rig of the fuel metering unit using PWM solenoid valve and CPDV(Constant Pressure Drop Valve) for miniature turbo engines were constructed. As the results of simulation, some major parameters which have dominant effects on the performance were found. And the experimental results verified the validity of established model by showing the good agreement with the numerical simulation results. Hence, this system modeling could be used effectively in the actual development of a PWM fuel control system.

Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Combustor (액체추진제 로켓엔진 연소기 저주파 동특성)

  • Ha Seong-Up;Jung Young-Seok;Kim Hui-Tae;Han SangYeop;Cho Gwang-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.91-101
    • /
    • 2004
  • With the mathematic linear model of a combustor which consists of a combustion chamber and injectors, the analysis of low frequency dynamic characteristics of a liquld-propellant rocket engine combustor was performed. Propellant mass flowrate was varied by combustion chamber pressure feedback, therefore low frequency oscillation was appeared. Increasing the time constant of a combustion chamber and injector pressure differences and decreasing combustion time delay increased the combustor system stability. The variation of injector time constant little affected stability. The system was always stable, when there was no combustion time delay. Increasing combustion time delay decreased oscillation frequency and damping ratio, and the system eventually became unstable.

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.