• Title/Summary/Keyword: Constant Heat Flux

Search Result 224, Processing Time 0.024 seconds

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Melting Heat Transfer Characteristics of Plural Phase Change Microcapsules Slurry Having Different Diameters

  • Kim, Myoung-Jun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1225-1238
    • /
    • 2004
  • The present study has been performed for obtaining the melting heat transfer enhancement characteristics of water mixture slurries of plural microcapsules having different diameters encapsulated with solid-liquid phase change material(PCM) flowing in a pipe heated under a constant wall heat flux condition. In the turbulent flow region, the friction factor of the present PCM slurry was to be lower than that of only water flow due to the drag reducing effect of the PCM slurry. The heat transfer coefficient of the PCM slurry flow in the pipe was increased by both effects of latent heat involved in phase change process and microconvection around plural microcapsules with different diameters. The experimental results revealed that the average heat transfer coefficient of the PCM slurry flow was about 2~2.8 times greater than that of a single phase of water.

A Study on the Fouling Effect of Geothermal Water Scale in In-line tube Bank (직렬 관군에서 지열수스케일의 파울링 영향에 관한연구)

  • 윤석범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • An experimental study was conducted to investigate the fouling effects of geothermal water scale deposited onto a heating surface upon its forced convection heat transfer characteristics. Scales deposited onto the heating surfaces of heat exchangers seriously reduce the heat transfer perfor-mance and also increase the hydrodynamic drag. Accordingly fouling is an important problem in the design and operation of heat exchangers. The cylinders were settled in tandem with equal dis-tance between neighbouring cylinders and only the test cylinder was heated under the condition of constant heat flux. The Reynolds number was varied from 13000310 through 50003100. It is found that the heat transfer of the in-line tube banks greatly varies with the fouling of geothermal water scale especially its scale height. Further the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.

  • PDF

Thermal analysis on triple-passage heat exchangers for a hot tube cooling system (고온의 강관 냉각용 삼중 열교환기에 대한 열해석)

  • 고봉환;박승호;신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.615-623
    • /
    • 1999
  • The objective of present study is to analyze a hot steel-tube cooling system as a kind of concentric triple-passage heat exchanger, whose inner tube is moving with a constant speed. Velocities and temperatures of an antioxidant gas flowing between inner and outer tubes are calculated theoretically for both laminar and turbulent flow regimes and used to give Nusselt numbers and friction factors with respect to various radius ratios and velocity ratios. In addition, it is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since the local heat transfer coefficients are dependent on the local heat flux ratios.

  • PDF

A study on Flow and Heat Transfer Characteristics in a Duct with Periodic Pressure Gradient (주기적인 압력구배를 받는 덕트에서의 유동 및 열전달특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.369-381
    • /
    • 1992
  • Characteristics of flow and heat transfer have been studied numerically in a square duct with a periodic pressure gradient. The flow in a duct was assumed to be fully developed and constant heat flux was imposed at the surfaces of a square duct. The distributions of axial velocity and time-space averaged temperature are investigated with angular velocity and amplitude ratio at a given Reynolds number 1000. When the periodic pressure gradient was imposed axially in a duct, the reverse flow may be occurred near the duct wall. The magnitude of this reverse flow increases as the amplitude ratio increases or as the angular frequency decreases. In the ranges of the amplitude ratio and the angular velocity in present investigation, the ratio of the periodic time space averaged temperature to the nonperiodic space averaged temperature has been found to be greater than one. This means that the cooling effect at the duct walls deteriorates with a periodic situation compared with nonperiodic one.

Heat Transfer Measurement in a Supersonic Flowfield by an Infra-red Thermography (적외선 측정 기법을 이용한 초음속 유동내 열전달 측정)

  • Yu, Man-Sun;Yi, Jong-Ju;Song, Ji-Woon;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-362
    • /
    • 2006
  • Infra-red thermography was conducted to understand a heat transfer characteristic on a surface protruded to a supersonic flowfield. Surface temperature distribution was obtained under the constant heat flux condition with a infra-red camera and the convective heat transfer coefficient distribution was calculated. Finally, two dimensional distribution of heat transfer coefficient on a surface around a cylinder body was derived.

  • PDF

AUGMENTATION OF TURBULENT HEAT TRANSFER IN A CHANNEL USING A SQUARE ROD (2차원 채널에서 사각봉을 이용한 난류열전달 증가에 대한 수치해석)

  • Kim, Hee-Young;Park, Tae-Seon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.118-124
    • /
    • 2008
  • The characteristics of heat transfer in a two-dimensional channel obstructed by a square rod is investigated by a turbulence model. The computation is made for the six cases of different rod positions between channel walls. To analyze the wall heat transfer, the heat flux of channel walls is set as a constant value and the $k-{\epsilon}-f_{\mu}$ model is employed. Downstream the square rod, the flow recirculation region appear and they are varied by the rod position. The enhancement of the turbulent heat transfer to the wall is induced by the flow instability using a square rod. The averaged heat transfer rate is maximized at a specific rod position. Finally, the effects of square rod on unsteady flows are scrutinized with the frequency analysis.

  • PDF

Convective Heat Transfer of Using an Ice Slurry in n circular pipe (아이스 슬러리의 원형관내 대류열전달에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.130-135
    • /
    • 2000
  • To enhance heat transfer characteristics of water, fine ice was added to it. The convective heat transfer characteristics of the ice slurry were investigated in a flow loop with a constant heat flux test section. The Nusselt number and Fanning friction coefficient of water flow were found to be similar to the expected curve by Petukhov. The Nusselt number of the ice sin flow was higher than the Nusselt number of water. Effective thermal capacity of the 10.84% ice slurry was found to have 2.39 times of the thermal capacity of water.

  • PDF

Numerical Study about Heat Transfer Enhancement of Water-Microparticles Suspension (물-미립자 현탁액의 난류 열전달 향상에 관한 수치해석적 연구)

  • 정세훈;손창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.29-35
    • /
    • 2000
  • The present numerical study investigates heat transfer enhancement mechanism for suspensions of polystyrene particles in water. Numerical simulations were done for turbulent hydrodynamic fully developed flows in a circular duct with constant wall heat flux. The experimental result of microparticle suspensions show 25∼45% heat transfer enhancement over those of water. The present numerical results show the main parameter for the heat transfer enhancement of microparticle suspension in a circular duct is the change of velocity profile by the non-Newtonian fluid behavior.

  • PDF

Turbulent Heat Transfer in Rough Concentric Annuli With Heating Condition of Constant Wal Heat Flux (일정벽면열유속의 가열조건의 갖는 거친 동심환형관내의 난류열전달)

  • 손유식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The fully developed turbulent momentum and heat transfer induced by the roughness elements on the outer wall surfaces in concentric annuli are analytically studied on the basis of a modified turbu-lence model. The resulting momentum and heat transfer are discussed in terms of various parame-ters such as the radius ratio the roughness density Reynolds number and Prandtl number accord-ing to the heating condition. The study shows that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view.

  • PDF