• Title/Summary/Keyword: Constant Current Controller

Search Result 217, Processing Time 0.021 seconds

Compensation of the Rotor Time Constant using Fuzzy Controller in Induction Motor Vector Control (유도전동기 벡터제어에서 퍼지제어기에 의한 시정수 보상)

  • Cha Duck-Gun;Park Jae-Sung;Park Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • The vector control system of an induction motor is the high performance drive system to achieve the instantaneous torque control. The vector control system is greatly divided into the direct control, and the indirect control that the most widely is used, The indirect vector control needs the rotor time constant, which changes widely according to the temperature, frequency, and current amplitude. The incorrect time constant leads to the saturation of magnetic flux or under-excitation phenomena. As a result, that deteriorate the control performance. Therefore, in this paper, the effect of time constant variation is investigated and its on-line tuning algorithm is proposed. The time constant using the torque angles was calculated and that of the validity of algorithm proposed was proved through the computer simulation and the experiment.

  • PDF

Induction Motor Control Using Adaptive Backstepping and MRAS (적응 백스테핑과 MRAS를 이용한 유도전동기 제어)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.77-78
    • /
    • 2008
  • This paper presents to control speed of induction motors with uncertainties. We use an adaptive backstepping controller with fuzzy neural networks(FNNs) and model reference adaptive system(MRAS) at Indirect vector control method. The adaptive backstepping controller using FNNs can control speed of induction motors even we have a minimum of information. And this controller can be used to approximate most of uncertainties which are derived from unknown motor parameters, load torque such as disturbances. MRAS estimates to rotor resistance and also can find optimal flux to minimize power losses of Induction motor. Indirect vector PI current controller is used to keep rotor flux constant without measuring or estimating the rotor flux. Simulation and experiment results are verified the effectiveness of this proposed approach.

  • PDF

Discharging Voltage Control with Error Detecting for Search light of Ship (선박용 탐사조명 전원장치의 방전개시전압 제어와 조명 이상검출)

  • Park, Noh-Sik;Kwon, Soon-Jae;Lee, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.8-17
    • /
    • 2008
  • This paper presents a stable lighting method for HID lamp for ship from initial discharging current limit with discharging voltage control. The output voltage of the proposed control scheme is boosted for ignition, and the charging voltage is decreased by the resistor discharging. The proposed controller fires the initial discharge at the designed discharging voltage to limit the discharge current. After the discharging, constant current controller is used for brightness in steady state. The proposed control scheme can limit the initial discharge current using the starting point control without a complex voltage controller. so it can improve the life-time of HID lamp and get a stable discharge from restricted the initial discharge current. In order to improve the protection of the system, a simple instantaneous error detecting circuit for open state and short state of HID lamp is used. The proposed error detecting of HID lamp can protect the power system of lamp control. The effectiveness of the proposed controller is verified from the experiments of practical 2.5[kW] HID search light for ship.

Measurement and Analysis for Positioning Control Characteristics using Encoder Signal of NC Machine Controller (공작기계용 NC제어기의 엔코더 신호를 이용한 위치제어 특성 측정 및 분석)

  • Kim Jong-Gil;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.311-317
    • /
    • 2005
  • NC controller parameters are fixed when the controller is combined with a machine. However, the characteristics of controller could be changed as it has being used by the machine or other environmental conditions. Ultimately, it results in tool positioning accuracy changing. The loading torque in servo motor also influences on the positioning accuracy. This study focus on a measuring and analysing method for verifying the angular positioning accuracy of NC servo motor. We used a high resolution A/D converter for acquiring analogue signal of rotary encoder in servo motor. Generating tool path by the combination of axial movements (X,Y,Z) is compared with the encoder signals with the servo motor torque. The current variation signal is also read from the servo motor power using a hall sensor and converted to the motor torque. The method of analysing proposed in this study will be used for determining the gains (tuning) of parameter in NC controller, when the controller is set up at a machine initially or the controller condition is changed during the work.

Rotor Time Costant Compensation for Vector-Controlled IM with DC Current Injection Method (직류전류 주입법에 의한 벡터제어 유도전동기의 회전자 시정수 보상)

  • Lee, K.J.;Nam, H.T.;Choi, J.W.;Kim, H.G.;Lee, D.K.;Chun, T.W.;Nho, E.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.285-287
    • /
    • 2001
  • To obtain a high performance in a vector controlled induction machine, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantages with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations.

  • PDF

Development of Digital Type Battery Charger based on Milti-Mode Control (디지털방식 다중제어 충전기 개발)

  • 변영복;구태근;김은수;조기연;김동희;변동환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.55-60
    • /
    • 2001
  • Most of the battery charger for electric powered forklift truck are controlled by the method of 3-phased constant current and constant voltage controls. However, these chargers have several disadvantages like a large charger capacity, and a short battery life time. To eliminate the weak points, a digital type battery charger based on multi-mode control adding a constant power control and several assistant controls in the conventional control is presented. The whole control system is performed by a low cost 8 bit one-chip micro-controller and completely digitize. So, we can get a high precision control and a good reliability.

  • PDF

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

The analysis of the thrust characteristics by a measurement of the back-EMF in a brushless DC linear motor (브러시리스 DC 선형 모터에서 역기전력 측정을 통한 추력 특성 분석)

  • Lee, Chun-Ho;Choi, Moon-Suk;Lee, Sang-Lak;Kim, Yong-Yil;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.10-12
    • /
    • 1997
  • For a given brushless DC linear motor, we analyze the thrust characteristics. We measure the back-EMF and then calculate the thrust with it. To compare the thrust, we measure it direct with force-torque meter and we calculate it from Lorentz equation. As the thrust and the back-EMF vary linearly according to the current and the velocity respectively, we define the thrust constant and the back-EMF constant. To match the motor to its controller, we calculate the thrust constant and the back-EMF constant. The result calculated with the back-EMF differs from that of the measurement by only 4.4%.

  • PDF

Novel Adaptive Blanking Regulation Scheme for Constant Current and Constant Voltage Primary-side Controlled Flyback Converter

  • Bai, Yongjiang;Chen, Wenjie;Yang, Xiaoyu;Yang, Xu
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1469-1479
    • /
    • 2017
  • Primary-side regulation (PSR) scheme is widely applied in low power applications, such as cell phone chargers, network adapters, and LED drivers. However, the efficiency and standby power requirements have been improved to a high standard due to the new trends of DOE (Department Of Energy) Level VI and COC (Code Of Conduct specifications) V5. The major drawbacks of PSR include poor regulation due to inaccurate feedback and difficulty in acquiring acceptable regulation. A novel adaptive blanking strategy for constant current and constant voltage regulation is proposed in this paper. An accurate model for the sample blanking time related to transformer leakage inductance and the metal-oxide-semiconductor field-effect transistor (MOSFET) parasitic capacitance is established. The proposed strategy can achieve accurate detection for ultra-low standby power. In addition, numerous control factors are analyzed in detail to eliminate the influence of leakage inductance on the loop stability. A dedicated controller integrated circuit (IC) with a power MOSFET is fabricated to verify the effectiveness of the proposed control strategy. Experimental results demonstrated that the prototype based on the proposed IC has excellent performance.

Adaptive Granule Control with the Aid of Rough Set Theory for a HVDC system (러프 셋 이론을 사용한 HVDC 시스템을 위한 적응 Granule 제어)

  • Wang, Zhongxian;Yang, Jeung-Je;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.144-147
    • /
    • 2006
  • A proportional intergral (PI) control strategy is commonly used for constant current and extinction angle control in a HVDC (High Voltage Direct Current) system. A PI control strategy is based on a stactic design where the gains of a PI controller are fixed. Since the response of a HVDC plant dynamically changes with variations in the operation point a PI controller performance is far from optimum. The contribution of this paper is the presentation of the design of a rough set based, fuzzy adaptive control scheme. Experimental results that compare the performance of the adaptive control and PI control schemes are also given.

  • PDF