• Title/Summary/Keyword: Constant Amplitude Control

Search Result 71, Processing Time 0.022 seconds

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

Active Vibration Control of a Flexible Cantilever Beam Using SMA Actuators (SMA 작동기를 이용한 유연외팔보의 능동진동제어)

  • Choi, S.B.;Cheong, C.C.;Hwang, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.167-174
    • /
    • 1995
  • This paper experimentally demonstrates the feasibility of using shape memory alloy(SMA) actuators in controlling structural vibrations of a flexible cantilevered beam. The dynamic characteristics of the SMA actuator are identified and integrated with the beam dynamics. Three types of control schemes; constant amplitude controller(CAC), proportional amplitude controller (PAC) and sliding mode controller(SMC) are designed. The CAC and PAC are determined on the basis of physical phenomenon of the SMA actuator, while teh SMC is formulated in a mathematical manner. The proposed controllers are implemented and evaluated at various operating condirions by investigating the control level of suppression in transient vibration.

  • PDF

Quantitative Analysis of EMG Amplitude Estimator for Surface EMG Signal Recorded during Isometric Constant Voluntary Contraction (등척성 일정 자의 수축 시에 기록한 표면근전도 신호에 대한 근전도 진폭 추정기의 정량적 분석)

  • Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.843-850
    • /
    • 2017
  • The EMG amplitude estimator, which has been investigated as an indicator of muscle force, is utilized as the control input to artificial prosthetic limbs. This paper describes an application of the optimal EMG amplitude estimator to the surface EMG signals recorded during constant isometric %MVC (maximum voluntary contraction) for 30 seconds and reports on assessing performance of the amplitude estimator from the application. Surface EMG signals, a total of 198 signals, were recorded from biceps brachii muscle over the range of 20-80%MVC isometric contraction. To examine the estimator performance, a SNR(signal-to-noise ratio) was computed from each amplitude estimate. The results of the study indicate that ARV(average rectified value) and RMS(root mean square) amplitude estimation with forth order whitening filter and 250[ms] moving average window length are optimal and showed the mean SNR improvement of about 50%, 40% and 20% for each 20%MVC, 50%MVC and 80%MVC surface EMG signals, respectively.

Constant-Amplitude Multicode-Biorthogonal Modulation using Product Code (격자부호를 이용한 정진폭 다중부호 이진직교 변조방식)

  • Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.522-527
    • /
    • 2007
  • In this paper, we propose an error control coding scheme for constant-amplitude multicode-biorthogonal modulation. The product code is appropriate to the constant-amplitude multicode-biorthogonal modulation for the bit error rate performance improvement. In the constant-amplitude multicode-biorthogonal modulation, the vertical redundant bits are used for the constant amplitude coding. The proposed product code can be constructed by using the additional horizontal redundant bits. The hardware complexity of the encoder/decoder pair is very low. The simulation results show that the bit error rate performance of the proposed coding scheme is improve

  • PDF

Compensation of the Rotor Time Constant using Fuzzy Controller in Induction Motor Vector Control (유도전동기 벡터제어에서 퍼지제어기에 의한 시정수 보상)

  • Cha Duck-Gun;Park Jae-Sung;Park Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • The vector control system of an induction motor is the high performance drive system to achieve the instantaneous torque control. The vector control system is greatly divided into the direct control, and the indirect control that the most widely is used, The indirect vector control needs the rotor time constant, which changes widely according to the temperature, frequency, and current amplitude. The incorrect time constant leads to the saturation of magnetic flux or under-excitation phenomena. As a result, that deteriorate the control performance. Therefore, in this paper, the effect of time constant variation is investigated and its on-line tuning algorithm is proposed. The time constant using the torque angles was calculated and that of the validity of algorithm proposed was proved through the computer simulation and the experiment.

  • PDF

Muscle Force Potentiation During Constant Electrical Stimulation - Dependence on Pulse-Amplitude and Pulse-Duration of Electrical Stimulation (일정 전기자극하의 근력 상승 - 전기 자극 파형의 펄스 진폭과 펄스폭에 대한 의존성)

  • Kim, Ji-Won;Kwang, Min-Young;Eom, Gwang-Moon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.458-463
    • /
    • 2006
  • The purpose of this work is to investigate the fundamental properties of the gradual muscle force potentiation. We investigated the dependence of force potentiation on both the pulse-amplitude and the pulse-duration with different ramp-up time. The experimental results showed that the force increment ratio (FIR) during constant electrical stimulation decreased with pulse-amplitude and also with pulse-duration. The FIR was greater with short ramp-up time in both the pulse-amplitude and pulse-width modulation. The feasible mechanism might be that the myosin light chain phosphorylation induces the force potentiation and it occurs only in the fast type muscle fibers which are recruited first. These observations indicate that muscle potentiation must be understood well for the accurate control of muscle force.

A new ultrasonic power generator using instantaneous current resultant control-based inverter and its control system

  • Kim, Dong-Hee;Kim, Young-Seok;Yoo, Dong-Wook;Kim, Yo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.631-636
    • /
    • 1987
  • The design of ultrasonic transducer energy processing systems requires highly reliable command featuring mechanical frequency tracking and constant velocity control of the ultrasonic transducer with an acoustic load. This paper presents a new conceptional instantaneous current resultant control base high-frequency inverter using self turn-off devices driving an electrostrictive ultrasonic transducer system and its optimum control technique, which is implemented by feed-back of the ultrasonic transducer applied voltage and instantaneous velocity of the transducer vibrating system through a Phase-Locked-Loop control scheme. The feedback voltage corresponding to instantaneous velocity is averaged over a half-period with respect to constant amplitude/constant velocity control strategy. Described are the theory of this signal detection technique and the experimental set-up.

  • PDF

Design of a CMOS W VCO with Automatic Amplitude Control (자동진폭조절 기능을 갖는 CMOS IF VCO 설계)

  • 김유환;문요섭;이종렬;박종태;유종근
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.145-148
    • /
    • 2002
  • In this paper, a voltage controlled oscillator (VCO) with automatic amplitude control is designed using a 0.35${\mu}{\textrm}{m}$ CMOS process. A cross-coupled PMOS pair is used for a negative resistance to compensate for the losses in the LC resonator, and an automatic\ulcorner amplitude control function is adapted to provide constant output power independent of the Q-factor of the LC resonator. The designed VCO operates in the 200MHz to 550MHz frequency range using different external resonators. The simulated phase noise is -128 dBc/Hz at 100KHz offset from the carrier frequency of 260MHz. It dissipates 0.㎽ from a 3V power supply. The area is 300${\mu}{\textrm}{m}$ x1201${\mu}{\textrm}{m}$.

  • PDF

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

Active Vibration Control of a Cylinder using Piezoceramic Actuator (축 방향 하중 전달 부재의 진동제어)

  • 김도형;최승주;박현철;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.9-12
    • /
    • 2001
  • An active control of the vibration transmitted by longitudinal load in flight control system is investigated numerically. The flight control system is modeled as a finite, thin shell cylinder with constant thickness. A vibration source is generated by exterior monopole source. Distributed piezoelectric actuator is used to control of the vibration. Thin shell theory is used to formulate the numerical models. The amplitude of vibration at discrete location and power transmission are minimized by analytical optimization method. Genetic algorithm is used as numerical optimization method to search optimal actuator position and size which amplitude of vibration is minimized.

  • PDF