• Title/Summary/Keyword: Consolidation behavior

Search Result 377, Processing Time 0.031 seconds

Consolidation Characteristics of Soft Ground with Artesian Pressure (피압에 따른 연약지반의 압밀 거동)

  • Yun, Daeho;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Vertical drain has usually been used to accelerate the consolidation of soft clay deposits with high moisture content. Busan thick clay deposits are subjected to artesian pressure from an aquifer in sand and gravel layers. However, effect of artesian pressure existing in drainage-installed soft ground on consolidation behaviors is not well known. This paper investigates the consolidation behavior of drainage-installed soft ground at the Nakdong river estuary with artesian pressure and without artesian pressure. A series of one-dimensional large size column test was carried out to find out the consolidation characteristics of clay. Test results indicated that total settlement of clay with artesian pressure was higher than that without artesian pressure because effective stress decreased due to upward flow. Dissipation rate of excess pore water pressure delayed and excess pore water pressure did not fully dissipate in clay layer with artesian pressure. Undrained shear strength of clay ground with artesian pressure was lower than that without artesian pressure.

Finite Strain and Nonlinear Consolidation Analysis Considering the Effect of Strain Rate Dependency on Clay (점토의 변형률 속도 의존성을 고려한 비선형 유한변형 압밀해석)

  • Lee, Bongjik;Lee, Heunggil;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.53-60
    • /
    • 2008
  • In recent years, finite strain consolidation theories including a mechanical nonlinearity and a reasonable coordinate system have been proposed and used in educations and practical consolidation problems. However, despite their reasonable ability to predict the consolidation behavior, their failure in the field can be attributed to the complexity of estimating and selecting proper parameters for simulating the consolidation phenomenon. In this study, therefore, the application of a piecewise-linear method was proposed to solve such problems including the assumption of the uniqueness in compressibility. Especially, the concept of reference curve was introduced to define the effect of strain rate dependency of clay. The applicability of the methodology is verified by several tests. It was found that the proposed method is applicable in restrictive ranges of study carried out in the laboratory. Finally it is expected that the verification in field consolidation problem has to be carried out through future study.

  • PDF

Consolidation Test Method Considering Sample Deformation Due to Stress Release by Sampling (시료채취에 의한 응력해방시 시료변형을 고려한 압밀시험)

  • Kim Jae-Young;Takada Naotoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.99-105
    • /
    • 2004
  • When a saturated clay is sampled from a borehole in an undisturbed manner, the exerted negative pore water pressure restricts the volume expansion. The vertical and horizontal stresses to which the clay was subjected in the ground are smaller and larger than this isotropically confining stress equivalent to the mean principal stress in the ground, respectively. Therefore the sample expands vertically and shrinks laterally under an undrained condition. In the ordinary consolidation test, the sample thus deformed is trimmed to fit the inside of the consolidometer ring. Thus, the specimen generates larger consolidation displacement due to confining larger horizontal stress when in-situ effective pressure is loaded. The specimen does not reproduce the in-situ consolidation behavior, In this paper, considering sample deformation, the test specimen is made to expand laterally to fit the inside of the ring in the undrained manner when the in-situ effective pressure is loaded. And applicability of this proposed test procedure was verified; results from the conventional consolidation test procedure are also discussed.

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

The Numerical Study on Individual Vacuum Seepage Consolidation Method with Flexible Well Point (연성 Well Point를 적용한 개별진공 침투압밀공법에 관한 해석적 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • In this study, the individual vacuum seepage consolidation method, a new soft ground improvement method, was developed to supplement the conventional suction drain method (individual vacuum preloading method) and the geotechnical behavior was predicted through numerical analysis. If the individual vacuum seepage consolidation method applied, the effect of accelerating settlement and increasing the amount of settlement was high when the aquifer was located in the middle or at the bottom of the layer to the target improvement layer. It was found that the pumping amount in the aquifer does not affect the settlement behavior when it exceeds a certain level. Even vacuum pumping wells were installed in various locations, such as inside or outside of the embankment, the difference in settlement and horizontal displacement was insignificant. In addition, it was predicted that the settlement rate was the fastest and the horizontal displacement (inward) was large when both methods were carried out at the same time. Since this method can reach the target settlement amount very quickly, it was confirmed that it is possible to increase the spacing of vertical drain, thereby securing economic feasibility.

Analysis on Consolidation Behavior of Soft Ground with Reactive Drain Pile (반응성 배수파일이 타설된 지반의 압밀거동 분석)

  • Kim, Beomjun;Oh, Myounghak;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Geotechnical evaluation on the reactive drain pile which can achieve simultaneously both the soft ground improvement and the remediation of contaminated pore water in reclamation site was performed. Applicability of steel-making slag used as a inside reactive material was confirmed. To investigate the consolidation characteristics of the soft ground improved by reactive drain pile, testing devices to form and install the reactive drain pile were developed and laboratory tests were performed according to the existence of outside sand drain and the length of impermeable barrier. Test results showed that the consolidation time was decreased as the shortening of impermeable barrier. However, the effect of outside sand drain on consolidation time was dominant compared with the length of impermeable barrier.

Layer Interface and Approximated Nonlinear Analysis Method for Consolidation Prediction (압밀현상 예측을 위한 경계면 및 근사 비선형 해석기법)

  • Lee, Kyuhwan;Jeon, Jesung;Kim, Kiyoung;Jung, Daeesuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.37-43
    • /
    • 2007
  • The interface layer having different consolidation properties and nonlinear material function with permeability needs to be considered to predict consolidation behavior. In this study, interface equation between different layers has been derived and then applied to existing finite difference scheme for conducting consolidation analysis. These results have been compared with those by conventional method in which different layers are converted to single layer having conversion value of properties. Also, although the conventional consoilidation analysis is used to consider non-linearity of the permeability with effective stress, an approximated nonlinear method as a function of consoilidation coefficient with effective stress have been developed and applied to the consoilidation analysis for various cases.

  • PDF

A Study of Consolidation Behavior of Clay Ground with Partially Penetrated PVD under Artesian Pressure (연직배수재가 부분 관입된 점토지반의 피압에 따른 압밀 거동에 관한 연구)

  • Yun, Daeho;Nguyen, Ba Phu;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • Many researchers reported that artesian pressure exists in thick soft ground of Busan Nakdong river estuary. Artesian pressure in soft ground could affect rate of consolidation, settlement and drainage capasity of prefabricated vertical drain(PVD). This paper investigated consolidation behaviors of soft ground with partially penetrated PVD subjected to artesian pressure. Laboratory tests with 1-dimensional large column equipment and their numerical analyses were carried out. Test results showed that the consolidation settlement of clay ground with artesian pressure was higher than that without artesian pressure. Due to artesian pressure, the dissipation rate of excess pore water pressure was reduced in soft ground with artesian pressure, especially at bottom part of clay ground. Numerical results were in good agreement with experimental test results.

Stress Sharing Behaviors and its Mechanism During Consolidation Process of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 SCP에 의한 복합지반의 압밀 과정중에 발생하는 응력분담거동과 그 메커니즘)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.301-310
    • /
    • 2003
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behavior of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF