• Title/Summary/Keyword: Consolidated Sample

Search Result 50, Processing Time 0.022 seconds

The synthesis and properties of point defect structure of Cu2-XZnSnS4 (x=0.1, 0.2, and 0.3)

  • Bui D. Long;Le T. Bang
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Cu-based sulfides have recently emerged as promising thermoelectric (TE) materials due to their low cost, non-toxicity, and abundance. In this research, point defect structure of Cu2-xZnSnS4 (x=0.1, 0.2, 0.3) samples were synthesized by the mechanical alloying method. Mixed powders of Cu, Zn, Sn and S were milled using high energy ball milling at a rotation speed of 300 rpm in Ar atmosphere. The milled Cu2-xZnSnS4 powders were heat-treated at 723 K for 24 h, and subsequently consolidated using spark plasma sintering (SPS) under an applied pressure of 60 MPa for 15 min. The thermal conductivity of the sintered Cu2-xZnSnS4 samples was evaluated. A well-defined Cu2-xZnSnS4 powders were successfully formed after milling for 16 h, with the particle sizes mostly distributed in the range of 60-100 nm. The lattice constants of aand cdecreased with increasing composition value x. The thermal conductivity of sintered x=0.1 sample exhibited the lowest value and attained 0.93 W/m K at 673 K.

Assessment of creep improvement of organic soil improved by stone columns

  • Kumail R. Al-Khafaji;Mohammed Y. Fattah;Makki K. Al-Recaby
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.191-203
    • /
    • 2024
  • One of the issues with clayey soils, particularly those with significant quantities of organic matter, is the creep settling problem. Clay soils can be strengthened using a variety of techniques, one of which is the use of stone columns. Prior research involved foundation loading when the soil beds were ready and confined in one-dimensional consolidation chambers. In this study, a particular methodology is used to get around the model's frictional resistance issue. Initially, specimens were prepared via static compaction, and they were then re-consolidated inside a sizable triaxial cell while under isotropic pressure. With this configuration, the confining pressure can be adjusted, the pore water pressure beneath the foundation can be measured, and the spacemen's lateral border may be freely moved. This paper's important conclusions include the observation that secondary settlement declines with area replacement ratio. Because of the composite ground's increasing stiffness, the length to diameter ratio (l/d) and the stone column to sample height ratio (Hc/Hs) both increase. The degree of improvement varies from 12.4 to 55% according to area replacement ratio and (l/d) ratio.

Effects of Various Fabrication Routes on Thermoelectric Properties of n-type Bi2Te2.85Se0.15 Alloys (제조공정에 따른 n형 Bi2Te2.85Se0.15합금의 열전성능 평가)

  • Nagarjuna, C.;Shin, D.W.;Lee, M.W.;Lee, S.H.;Hong, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.135-142
    • /
    • 2018
  • In this study, we have fabricated n-type $Bi_2Te_{2.85}Se_{0.15}$ compounds by different processing routes such as crushing, milling and mixing respectively. Subsequently, the obtained powders were consolidated by spark plasma sintering (SPS). The phase crystallinity of bulk samples were identified using X-ray diffraction technique. Powder morphology and fracture surface of bulk samples were observed using the scanning electron microscopy (SEM). The Seebeck coefficient and electrical conductivity values were significantly increased for the milling sample than crushing and mixing samples. As a result, the maximum power factor was obtained $2.4mW/mK^2$, which is thrice than that of crushing process. The maximum figure of merit (ZT) of 0.77 was achieved at 400 K for the milling sample. Furthermore, relatively high hardness and density values were noticed for the different processed samples.

An Experimental Study on Silty Clay Subjected to Repeated Loads (반복하중을 받는 실트질 점토에 관한 실험적 연구 -과압밀 점토를 중심으로-)

  • Kim, Pal-Gyu;Kim, Gyeong-Jin;Song, Jeon-Seop
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.37-46
    • /
    • 1989
  • The object of this paper is to study the general characteristics of overconsolidated silty clays subjected to repeated loading. The samples are first remolded. overconsolidated and a series of strain - controlled triaxial repeated tests are carried out. Generally the relationship of deviator stress - axial strain of overconsolidated clay is similar in pattern to the normally consolidated clay under single load. But the behavior of the pore water pressure build up in the sample subjected to repeated loading is dependent upon the consolidation history and the level of repeated stress. Therefore through the series of the tests, the characteristics of stress -strain relationship of soils which are differentlly overconsolidated are investigated, analysed and then compared with each soils. And also, from the relationship of test results, the strength and strain characteristics of soils are obierved. The equilibrium lines which presents the critical repeated stress and equilibrium state in the sample under repeated loading, are often straight, but may be curved. And the tendency of the equilibrium lines is observed as to the variation of overconsolidation ratio.

  • PDF

Effect of internal stability on the failure properties of gravel-sand mixtures

  • Zhongsen Li;Hanene Souli;Jean-Marie Fleureau;Jean-Jacques Fry;Tariq Ouahbi;Said Taibi
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.395-403
    • /
    • 2023
  • The paper investigates the effect of two parameters - sand content (SC) and grain migration during shearing - on the mechanical properties of gravel-sand mixtures. Consolidated undrained (CU) triaxial tests were carried out on eight series of mixtures containing gravel (1<d<16 mm) and sand (0.1<d<1 mm). The prepared mixtures have sand contents of 0, 10, 15, 20, 40, 54, 94 and 100%, and a relative density of 60%. The transition sand content (TSC) is experimentally defined and marks the transition from gravel-driven to sand-driven behavior. For SC<TSC, the dry density of the mixture increases with SC. This induces an increase in undrained peak strength and dilative trend. The slope and position of the critical state line (CSL) are also deeply dependent on SC. At SC=TSC, the mixtures exhibit the largest dry density and yield the highest undrained peak strength and the largest dilative trend. During shearing, large internal migration of grains was observed at the TSC, causing heterogeneity in the sample. Analysis of the CSL deduced from the final points of the triaxial tests shows that, at the TSC, failure appears to correspond to the behavior of the coarsest fraction of the soil. This fraction is located in the upper part of the sample, where the sand particles had been eliminated by suffusion. On the other hand, in the more stable materials, the CSL is consistent with the bulk grain size distribution of the soil.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

A Study on the Analysis of Outside Mural Paintings treated in Maitreya Hall of Geumsan-sa Buddhist Temple, Korea (금산사미륵전 외벽화 보존처리된 벽체의 분석 연구)

  • Han, Kyeong-Soon;Lee, Sang-Jin;Lee, Haw-Soo
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.445-458
    • /
    • 2010
  • The deterioration and structural damage such as exfoliation, cracks, and separation of painted layer on the wall paintings of Maitreya Hall in Geumsan-sa temple have been accelerated since it was re-positioned to the original place after the dismantling from the building in 1993. The examination of which result and analysis described in this study, is a preliminary survey for establishing conservation plan of the wall paintings. It aimed at the understanding of the physical and chemical characteristics of the materials applied in the 1993 conservation. The research focused on the south walls which displayed the worst condition compared to other walls. Samples for the examination for the understanding of micro-structure, chemical composition, cristalisation, and particle distribution, were collected for finishing, middle, and consolidated layers of the walls between pillars and the ones between brackets. Those samples were collected from separated fragments of the walls. The sample analysis displayed that: 1. the 1993 conservation used the similar type of weathered soil as the original for the finishing layer, and such soil and sand for the middle layer; 2. those walls are composed of a group of mineral particles which are relatively equal in size and shape and in their distribution; 3. the mineral particles were cohered forming solid aggregate due to the application of acrylic resin for the reinforcement on the wall. The main composition of crystalisation on the first and the second reinforcement layers of the back walls were lime plaster ($CaSO_4{\cdot}2H_2O$). The overall examination confirmed that the priority of the future conservation treatment should be given to the removal of the first and the second layers of reinforcement and the treatment on the back walls which were partially consolidated.

Experimental Application of Consolidants Using Artificially Weathered Stones(II): Focusing on Accelerated Weathering Test (인공풍화암을 이용한 강화제의 적용실험 연구(II): 촉진풍화실험을 통한 강화처리 암석의 내구성 평가)

  • Lee, Jae Man;Lee, Myeong Seong;Park, Sung Mi;Lee, Mi Hye;Kim, Jae Hwan
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.249-259
    • /
    • 2013
  • This study was experimented on accelerated weathering test using salt and freeze-thaw to prove effects of consolidants and consolidation for stone cultural heritage. The samples used four kinds of stones (Gyeongju Namsan Granite, Iksan Granite, Yeongyang Sandstone and Jeongseon Marble) which to distributed by three type of weathering grade (Fresh, Weathered Stone and Highly Weathered Stone) added for thermal treatment. The samples were treated with three consolidants (Wacker OH 100, Remmers KSE 300 and 1T1G), and tested by 500 cycles with freezing-thawing and 50 cycles of salt weathering test. As a results of freezing-thawing test, the crack and destruction occurred from some samples. And total immersed samples maintained effect of consolidation to 200 cycles. Also, The rock particle was fall off and gradually destructed by salts weathering test. The consolidated sample relatively had fewer changes by the weathering than not treated sample. The sprayed sample had not continuous effect on weathering.

A Modified Method for the Radial Consolidation with the Time Dependent Well Resistance (시간 의존적 배수저항을 고려한 방사방향 압밀곡선 예측법)

  • Kim, Rae-Hyun;Hong, Sung-Jin;Jung, Doo-Suk;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2008
  • The existing equations for radial consolidation cannot account for the changes of well resistance with time and cannot predict the appropriate in-situ consolidation curve. In this study, small cylinder cell tests are performed to evaluate the discharge capacity of PVD. Also, a block sample of 1.2 m in diameter and 2.0 m in height was consolidated to observe the change in the drainage capacity with time for three types of PVD. From the test results on a block sample, the drainage curves normalized with initial drainage of each PVD are similar, regardless of the PVD type and the consolidation curve, which is predicted using solutions of radial consolidation based on the discharge capacity measured in a small cylinder cell tests, significantly overestimates the degree of consolidation. The term of well resistance in the radial consolidation solution was back-calculated to fit the consolidation curve of a large block sample and it is defined as the time dependent well resistance factor, L(t). The L(t) was found to be linearly proportional to the dimensionless time factor, Th. It was also shown that the consolidation curve evaluated by using L(t) provides more accurate prediction than the existing solution.

A Study on the Application of SILRES BS OH 100 Consolidants for Shale (셰일에 대한 SILRES BS OH 100 강화제 적용연구)

  • Lee, Sang-Jin;Kim, Jin-Hyung;Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.33-40
    • /
    • 2007
  • The consolidation application of SILRES BS OH 100 was investigated, which has been used for consolidation of the weathered shale. The liquid SILRES BS OH 100 was polymerized by the sol-gel reaction with air moisture, and the XRD patterns showed that the gel was an amorphous solid. The drastic weight reduction of the sample was found by differential thermal analysis, which was followed to the formation of $Si(OH)_4$ particles. After consolidation, the polymerized gel was filled into the voids within the shale. The capillary water absorption of the consolidated shale was reduced to 48.7%, and the abrasive strength was improved.

  • PDF