DOI QR코드

DOI QR Code

Assessment of creep improvement of organic soil improved by stone columns

  • Kumail R. Al-Khafaji (Department of Civil Engineering, University of Technology) ;
  • Mohammed Y. Fattah (Department of Civil Engineering, University of Technology) ;
  • Makki K. Al-Recaby (Department of Civil Engineering, University of Technology)
  • Received : 2022.05.16
  • Accepted : 2024.07.15
  • Published : 2024.07.25

Abstract

One of the issues with clayey soils, particularly those with significant quantities of organic matter, is the creep settling problem. Clay soils can be strengthened using a variety of techniques, one of which is the use of stone columns. Prior research involved foundation loading when the soil beds were ready and confined in one-dimensional consolidation chambers. In this study, a particular methodology is used to get around the model's frictional resistance issue. Initially, specimens were prepared via static compaction, and they were then re-consolidated inside a sizable triaxial cell while under isotropic pressure. With this configuration, the confining pressure can be adjusted, the pore water pressure beneath the foundation can be measured, and the spacemen's lateral border may be freely moved. This paper's important conclusions include the observation that secondary settlement declines with area replacement ratio. Because of the composite ground's increasing stiffness, the length to diameter ratio (l/d) and the stone column to sample height ratio (Hc/Hs) both increase. The degree of improvement varies from 12.4 to 55% according to area replacement ratio and (l/d) ratio.

Keywords

References

  1. Aboshi, H. (1979), "The Compozer"-a method to improve characteristics of soft clays by inclusion of large diameter sand columns", Proceedings of the international conference on soil reinforcement: Reinforced earth and other techniques, Paris, 1, 211-216. 
  2. Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotech. Geoenviron. Eng., 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405). 
  3. Al-Auqbi, S.T., Salim, N.M. and Mahmood, M.R. (2022), "The impact of using different types of soft soils treated by stone columns on creep behavior", Proceedings of the IOP Conf. Ser.: Earth Environ. Sci., 961, 012052. https://doi.org/10.1088/1755-1315/961/1/012052. 
  4. ASTM, D422 (2007), Standard test method for particle-size analysis of soils, American Society for Testing and Materials. 
  5. ASTM, D2435 (2004), Standard Test Methods for OneDimensional Consolidation Properties of Soils Using Incremental Loading, American Society for Testing and Materials. 
  6. ASTM, D2974 (2020), Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils, American Society for Testing and Materials. 
  7. ASTM, D4318 (2018), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. 
  8. ASTM, D4767 (2011), Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, American Society for Testing and Materials. 
  9. Balaam, N.P. and Booker, J.R. (1981), "Analysis of rigid rafts supported by granular piles", Int. J. Numer. Anal. Method. Geomech., 5(4), 379-403. 
  10. Barksdale, R.D. and Bachus, R.C. (1983), "Design and construction of stone columns", Appendixes. Federal Highway Administration. 
  11. Basha, A., Azzam, W. and Elsiragy, M. (2024), "Utilization of sand cushion for stabilization of peat layer considering dynamic response of compaction". Civil Eng. J., 10(4), https://doi.org/10.28991/CEJ-2024-010-04-011. 
  12. Castro, J., Karstunen, M., Sivasithamparam, N. and Sagaseta, C. (2013), "Numerical analyses of stone column installation in Bothkennar clay", Proceedings of the International Conference on Installation Effects in Geotechnical Engineering (ICIEGE), Rotterdam, the Netherlands. 
  13. Fattah, M.Y., Shlash, K.T. and Al-Waily, M.J.M. (2011), "Stress concentration ratio of model stone columns in soft clays", Geotech. Test. J., 34(1), 50-60. https://doi.org/10.1520/GTJ103060. 
  14. Fattah, M.Y., Zabar, B.S. and Hassan, H.A. (2015), "Soil arching analysis in embankments on soft clays reinforced by stone columns", Struct. Eng. Mech., 56(4), 507-534. https://doi.org/10.12989/sem.2015.56.4.507. 
  15. Fattah, M.Y., Zabar, BS. and Hassan, H.A. (2016),. "Experimental analysis of embankment on ordinary and encased stone columns", Int. J. Geomech., 16(4), 04015102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000579. 
  16. Fattah, M.Y., Al-Neami, M.A. and Al-Suhaily, A.S. (2017), "Estimation of bearing capacity of floating group of stone columns", Eng. Sci. Tech. Int. J., 20(3), 1166-1172. https://doi.org/10.1016/j.jestch.2017.03.005. 
  17. Fattah, M.Y., Al-Omari, R.R. and Hameedi, M.K. (2021), "Tracing of stresses and pore water pressure changes during a multistage modified relaxation test model on organic soil", Arabian J. Geosci., 14, 1976. https://doi.org/10.1007/s12517-021-08321-7. 
  18. Feng, W.Q. and Yin, J.H., (2020), "Development and verification of a new simplified method for calculating settlement of a thick soil layer with nonlinear compressibility and creep", Int. J. Geomech. ASCE, 20(3). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001562. 
  19. Feng, R., Wang, L., Wei, K. and Zhao, J., (2021), "Consolidation settlement of soil foundations containing organic matters subjected to embankment load", Geomech. Eng., 24(1), 43-55. https://doi.org/10.12989/gae.2021.24.1.043. 
  20. Hameedi, M.K., Fattah, M.Y. and Al-Omari, R.R., (2020), "Creep characteristics and pore water pressure changes during loading of water storage tank on soft organic soil", Int. J. Geotech. Eng., 14(5), 527-537, https://doi.org/10.1080/19386362.2019.1682350. 
  21. Hughes, J.M.O. and Withers, N.J. (1974), "Reinforcing of soft cohesive soils with stone columns", Ground Eng., 7(3). 
  22. Kumar, G. and Samanta, M. (2020), "Experimental evaluation of stress concentration ratio of soft soil reinforced with stone column", Innov. Infrastruct. Solut., https://doi.org/10.1007/s41062-020-0264-6. 
  23. Lajevardi, S.H. and Enami, S. (2021), "Small scale behavior of stone columns encased by tires", Geomech. Eng., 25(5), 429-438. https://doi.org/10.12989/gae.2021.25.5.429. 
  24. McCabe, B.A., Nimmons, G.J. and Egan, D. (2009), "A review of field performance of stone columns in soft soils", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162(6), 323-334. https://doi.org/10.1680/geng.2009.162.6.323. 
  25. McKelvey, D. (2002), "The performance of vibro stone column reinforced foundations in deep soft ground", Ph.D. thesis, Queen's University Belfast. 
  26. McKelvey, D., Sivakumar, V., Bell, A. and Graham, J. (2004), "Modelling vibrated stone columns in soft clay", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 157(3), 137-149. https://doi.org/10.1680/geng.2004.157.3.137. 
  27. Mitchell, J.K. and Huber, T.R. (1985), "Performance of a stone column foundation", J. Geotech. Eng., 111(2), 205-223. 
  28. Mitchell, J.K. and Kelly, R. (2013), "Addressing some current challenges in ground improvement", Proceedings of the Institution of Civil Engineers, Ground Improvement, 166(3), 127e37. https://doi.org/10.1680/grim.12.00030. 
  29. Mohamed, M.K., Sakr, M.A. and Azzam, W.R. (2023), "Geotechnical behavior of encased stone columns in soft clay soil", 8, 80. https://doi.org/10.1007/s41062-023-01044-6. 
  30. Priebe, H. (1976), "Estimating settlements in a gravel column consolidated soil", Die Bautechnik, 53, 160-162. 
  31. Priebe, H.J. (1995), "The design of vibro replacement", Gound Eng. 28(10), 31. 
  32. Shahu, J.T., Madhav, M.R. and Hayashi, S. (2000), "Analysis of soft ground-granular pile-granular mat system", Comput. Geotech., 27(1), 45-62. https://doi.org/10.1016/S0266-352X(00)00004-5. 
  33. Sexton, B.G., McCabe, B.A., Karstunen, M. and Sivasithamparamc, N. (2016), "Stone column settlement performance in structured anisotropic clays: the influence of creep", J. Rock Mech. Geotech. Eng., 8(5), 672-688, https://doi.org/10.1016/j.jrmge.2016.05.004. 
  34. Sun, J., Lu, M., Xu, B. and Shan, J. (2024), "Consolidation of high replacement ratio stone column-reinforced ground: Analytical solutions incorporating clogging effect", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2023.12.011. 
  35. Van Impe, W. (1983), "Improvement of settlement behaviour of soft layers by means of stone columns", Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering: Improvement of Ground. 
  36. Watts, K.S., Johnson, D., Wood, L.A. and Saadi, A. (2000), "An instrumented trial of vibro ground treatment supporting strip foundations in a variable fill", Geotechnique, 50(6), 699-708. https://doi.org/10.1680/geot.2000.50.6.699. 
  37. Ye, W.M., Lai, X.L., Wang, Q., Chen, Y.G., Chen, B. and Cui, Y.J. (2014), "An experimental investigation on the secondary compression of unsaturated GMZ01 bentonite", Appl. Clay Sci., 97-98, 104-109. https://doi.org/10.1016/j.clay.2014.05.012.