• 제목/요약/키워드: Conserved Region Extraction

검색결과 3건 처리시간 0.015초

Phylogenetic relationships of Iranian Allium species using the matK (cpDNA gene) region

  • Zarei, Hemadollah;Fakheri, Barat Ali;Naghavi, Mohammad Reza;Mahdinezhad, Nafiseh
    • Journal of Plant Biotechnology
    • /
    • 제47권1호
    • /
    • pp.15-25
    • /
    • 2020
  • Allium L. is one of the largest genera of the Amaryllidaceae family, with more than 920 species including many economically important species used as vegetables, spices, medicines, or ornamental plants. Currently, DNA barcoding tools are being successfully used for the molecular taxonomy of Allium. A total of 46 Allium species were collected from their native areas, and DNA was extracted using the IBRC DNA extraction kit. We used specific primers to PCR amplify matK. DNA sequences were edited and aligned for homology, and a phylogenetic tree was constructed using the neighbor-joining method. The results show thymine (38.5%) was the most frequent and guanine (13.9%) the least frequent nucleotide. The matK regions of the populations were quite highly conserved, and the amount of C and CT was calculated at 0.162 and 0.26, respectively. Analysis of the nucleotide substitution showed C-T (26.22%) and A-G (8.08%) to have the highest and lowest percent, respectively. The natural selection process dN/dS was 1.16, and the naturality test results were -1.5 for Tajima's D and -1.19 for Fu's Fs. The NJ dendrogram generated three distinct clades: the first contained Allium austroiranicum and A. ampeloprasum; the second contained A. iranshahrii, A. bisotunense, and A. cf assadi; and the third contained A. rubellum and other species. In this study, we tested the utility of the matK region as a DNA barcode for discriminating Allium. species.

생물학적 데이터 서열들에서 빈번한 최대길이 연속 서열 마이닝 (Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences)

  • 강태호;유재수
    • 정보처리학회논문지D
    • /
    • 제15D권2호
    • /
    • pp.155-162
    • /
    • 2008
  • DNA 염기 서열이나 단백질 아미노산 서열과 같은 생물학적 서열 데이터들은 일반적으로 많은 수의 항목들을 가지고 있다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 수 백개의 항목으로 이루어진 연속된 서열들이 존재한다. 이들 서열들에서 빈번하게 발생하는 연속 서열을 검색하는 것은 생물학적 서열 분석에서 중요한 부분을 차지하고 있다. 이전에는 순차 패턴을 효과적으로 발견하고자 하는 많은 연구들이 수행되었으며 대부분의 기존 순차패턴 마이닝 기법들은 Apriori 알고리즘을 기반으로 한다. PrefixSpan 알고리즘은 Apriori 기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로 부터 서열 패턴을 확장해나가는 방식이다. 따라서 길이가 긴 연속 서열을 포함하는 생물학적 데이터서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 길이가 긴 생물학적 데이터 서열들로부터 빈번하게 발생하는 연속 서열들을 검색하기에는 효율적이지 않다. 본 논문에서는 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색성능이 보다 우수함을 보인다.

DMBA로 유도된 햄스터 협낭암종에서 p53 유전자 변이와 mdm-2 단백의 발현에 관한 연구 (STUDY ON MUTATION OF P53 AND EXPRESSION OF MDM-2 IN DMBA INDUCED CARCINOMA OF HAMSTER BUCCAL POUCH)

  • 박용선;김경욱;이재훈;김창진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권5호
    • /
    • pp.373-384
    • /
    • 2001
  • Cellular proliferation is an intricately regulated process mediated by the coordinated interactions of critical growth control genes. Two of these factors in mammalian cells are the p53 and mdm-2 genes. A protein product of the mem-2 oncogene has been recently shown to associate with the protein encoded by the tumor suppressor gene p53. The p53 tumor suppressor protein is stabilized in response to DNA damage and other stress signals and causes the cell to undergo growth arrest or apoptosis, thus preventing the establishment of mutations in future cellular generations. Mutation or loss of p53 is a very common event in tumor progression. It occurs in about 50% of all tumors analysed including of colon, lung, breast and liver. The cellular mdm-2 gene, which has potential transforming activity that can be activated by overexpression, is amplified in a significant percentage of human sarcoma and in other mammalian tumors. Proteins encoded by the mdm-2 gene are able to bind to the p53 protein and, when overexpressed, can inhibit p53's transcriptional activation function, thus mdm-2 can act as a negative regulator of p53 function. Experimental study was performed to observe the relationship between p53 gene mutation and mdm-2 protein expression and apply the results to the clinical activity. 36 golden syrian hamster each weighing $60{\sim}80g$ were used and painted with 0.5% DMBA by 3 times weekly on the right buccal cheek(experimental side) for 6, 8, 10, 12, 14 and 16 weeks. Left buccal cheek(control side) was treated with mineral oil as the same manner to the right side. The hamsters were sacrificed on the 6, 8, 10, 12, 14 & 16 weeks. Normal and tumor tissues from paraffin block were examined for histology and immunohistochemistry observation, and were completely dissected by microdissection and DNA from both tissue were isolated by proteins K/phenol/chloroform extraction. Segments of the hamster p53 exons 5, 6, 7 and 8 were amplified by PCR using the oligonucleotide primers, and then confirmational change was observed by SSCP respectively. The results were as follows : 1. Dysplasia at 6 weeks, carcinoma in situ at 8 weeks and invasive carcinoma from 10 weeks could be observed in experimental groups. 2. p53 mutations were detected in 10 of the 36(28%) and the exons 6(6 of the 10 : 60%) was the most hot spot area among the highy conserved region(exons 5, 6, 7 & 8). 3. Immunohistochemical study confirmed 22 of the 36(61%) of p53 expression involving 10 of p53 mutations. 4. mdm-2 expression of was showed in 3 of the 36(8%) involving 1 of the 22 of p53 expression and 2 of the 14 of p53 non-expression. From the above results, mutation of p53 gene or expression of p53 protein may have the influence of the DMBA induced carcinoma of hamster buccal pouch but the expression of mdm-2 protein may not have relationship with tumorigenesis.

  • PDF