Browse > Article
http://dx.doi.org/10.5010/JPB.2020.47.1.015

Phylogenetic relationships of Iranian Allium species using the matK (cpDNA gene) region  

Zarei, Hemadollah (Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol)
Fakheri, Barat Ali (Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol)
Naghavi, Mohammad Reza (Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran)
Mahdinezhad, Nafiseh (Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol)
Publication Information
Journal of Plant Biotechnology / v.47, no.1, 2020 , pp. 15-25 More about this Journal
Abstract
Allium L. is one of the largest genera of the Amaryllidaceae family, with more than 920 species including many economically important species used as vegetables, spices, medicines, or ornamental plants. Currently, DNA barcoding tools are being successfully used for the molecular taxonomy of Allium. A total of 46 Allium species were collected from their native areas, and DNA was extracted using the IBRC DNA extraction kit. We used specific primers to PCR amplify matK. DNA sequences were edited and aligned for homology, and a phylogenetic tree was constructed using the neighbor-joining method. The results show thymine (38.5%) was the most frequent and guanine (13.9%) the least frequent nucleotide. The matK regions of the populations were quite highly conserved, and the amount of C and CT was calculated at 0.162 and 0.26, respectively. Analysis of the nucleotide substitution showed C-T (26.22%) and A-G (8.08%) to have the highest and lowest percent, respectively. The natural selection process dN/dS was 1.16, and the naturality test results were -1.5 for Tajima's D and -1.19 for Fu's Fs. The NJ dendrogram generated three distinct clades: the first contained Allium austroiranicum and A. ampeloprasum; the second contained A. iranshahrii, A. bisotunense, and A. cf assadi; and the third contained A. rubellum and other species. In this study, we tested the utility of the matK region as a DNA barcode for discriminating Allium. species.
Keywords
cpDNA; marker; Molecular phylogeny; matK; Allium; Taxa;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Fritsch RM, Khassanov FO, and Matin F. (2002). New Allium taxa from Middle Asia and Iran. na
2 Fritsch RM, Salmaki Y, Zarre S, and Joharchi M. (2006) The genus Allium (Alliaceae) in Iran: current state, new taxa and new records. Rostaniha 7(2), 255-281
3 Fritsch RM, and Abbasi M. (2008) New taxa and other contributions to the taxonomy of Allium L. (Alliaceae) in Iran
4 Fritsch RM, and Abbasi M. (2013) A taxonomic review of Allium subg. Melanocrommyum in Iran. Leibniz-Institut fur Pflanzengenetik und Kulturpflanzenforschung
5 Fritsch RM, Blattner FR, and Gurushidze M. (2010) New classification of Allium L. subg. Melanocrommyum (Webb & Berthel.) Rouy (Alliaceae) based on molecular and morphological characters. Phyton (Horn) 49(2), 145-220
6 Fritsch RM, and Maroofi H. (2010) New species and new records of Allium L. (Alliaceae) from Iran. Phyton (Horn) 50, 1-26
7 Fritsch RM, Matin F, and Klaas M. (2001) Allium vavilovii M. Popov et Vved. and a new Iranian species are the closest among the known relatives of the common onion A. cepa L. (Alliaceae). Genetic Resources and Crop Evolution 48(4), 401-408   DOI
8 Fuse S, and Tamura MN. (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biology 2(4), 415-427   DOI
9 Ghanbari S, Fakheri BA, Naghavi MR, and Mahdinezhad N. (2018) Evaluating phylogenetic relationships in the Lilium family using the ITS marker. Journal of Plant Biotechnology 45(3), 236-241   DOI
10 Govaerts R, Kingto, S, Friesen N, Fritsch RM, Snijman DA, Marcucci R, Silverstone Sopkin PA. and Brullo S. (2005-2014). World checklist of Amaryllidaceae (WWW Document)
11 Guo X, Simmons MP, BUT PPH, SHAW PC, and WANG RJ. (2011) Application of DNA barcodes in Hedyotis L. (Spermacoceae, Rubiaceae). Journal of Systematics and Evolution 49(3), 203-212   DOI
12 Abdulina SA. (1999) Checklist of vascular plants of Kazakhstan. Institute of Botany and Plant Introduction, Almaty, 1-187
13 Abugalieva S, Volkova L, Genievskaya Y, Ivaschenko A, Kotukhov Y, Sakauova G, and Turuspekov Y. (2017) Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers. BMC plant biology 17, 258   DOI
14 Akhani H. (1999) Studies on the flora and vegetation of the Golestan National Park, NE Iran*. III. Three new species, one new subspecies and fifteen new records for Iran. Edinburgh Journal of Botany 56, 1-31   DOI
15 Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, and Fazekas AJ. (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences 106(31), 12794-12797   DOI
16 Guo J, SU JX, LIN RZ, LI RQ, and XIAO PG. (2011) Testing four proposed barcoding markers for the identification of species within Ligustrum L. (Oleaceae). Journal of Systematics and Evolution 49(3), 213-224   DOI
17 Gurushidze M, Fritsch RM, and Blattner FR. (2010) Species-level phylogeny of Allium subgenus Melanocrommyum: Incomplete lineage sorting, hybridization and trnF gene duplication. Taxon 59(3), 829-840   DOI
18 Gurushidze M, Mashayekhi S, Blattner FR, Friesen N, and Fritsch RM. (2007) Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Systematics and Evolution 269(3-4), 59-269.
19 Hall TA. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series 41, 95-98
20 Harpke D, Meng S, Rutten T, Kerndorff H, and Blattner FR. (2013) Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Molecular phylogenetics and evolution 66(3), 617-627   DOI
21 Hebert PD, Cywinska A, Ball SL, and Dewaard JR. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321   DOI
22 Kress WJ, and Erickson DL. (2008) DNA barcodes: genes, genomics, and bioinformatics. Proceedings of the National Academy of Sciences 105(8), 2761-2762   DOI
23 Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution 16(2), 111-120   DOI
24 Akhavan A, Saeidi H, Rahiminejad MR, Zarre S, and Blattner FR. (2015) Interspecific relationships in Allium subgenus Melanocrommyum sections Acanthoprason and Asteroprason (Amaryllidaceae) revealed using ISSR markers. Systematic botany 40(3), 706-715   DOI
25 Bandara NL, Papini A, Mosti S, Brown T, and Smith LMJ. (2013) A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae). Turkish Journal of Botany 37(6), 891-992
26 Brochmann C, Xiang QY, Brunsfeld SJ, Soltis DE, and Soltis PS, (1998) Molecular evidence for polyploid origins in Saxifraga (Saxifragaceae): the narrow arctic endemic S. svalbardensis and its widespread allies. American Journal of Botany 85, 135-143   DOI
27 Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, and Barrett SC. (2011). Discriminating plant species in a local temperate flora using the rbcL+ matK DNA barcode. Methods in Ecology and Evolution 2(4), 333-340   DOI
28 Koch M, Haubold B, and Mitchell-Olds T. (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. American Journal of Botany 88(3), 534-544   DOI
29 Kress WJ. (2017) Plant DNA barcodes: Applications today and in the future. Journal of systematics and evolution 55(4), 291-307   DOI
30 Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, and Savolainen V. (2008) DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences 105(8), 2923-2928   DOI
31 Leigh JW, and Bryant D. (2015) popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9), 1110-1116   DOI
32 Li FW, Kuo LY, Rothfels CJ, Ebihara A, Chiou WL, Windham MD, and Pryer KM. (2011) rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS One 6(10), e26597   DOI
33 Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, and Wei XQ. (2010) Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Annals of botany 106(5), 709-733   DOI
34 Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, and Chen S. (2015) Plant DNA barcoding: from gene to genome. Biological Reviews 90(1), 157-166   DOI
35 Friesen N, Fritsch RM, and Blattner FR. (2006) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso: A Journal of Systematic and Evolutionary Botany 22, 372-395   DOI
36 Choi HJ, Giussani LM, Jang CG, Oh BU, and Cota-Sanchez JH. (2012) Systematics of disjunct northeastern Asian and northern north American Allium (Amaryllidaceae). Botany 90(6), 491-508   DOI
37 De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, and Labra M. (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Research International 44(3), 693-702   DOI
38 Edgar RC. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32(5), 1792-1797   DOI
39 Fritsch RM, and Friesen N. (2002) Evolution, domestication and taxonomy. Allium crop science: recent advances, 5-30
40 Hirschegger P, Jakse J, Trontelj P, and Bohanec B. (2010) Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Molecular Phylogenetics and Evolution 54(2), 488-497   DOI
41 Huang X, and Madan A. (1999) CAP3: A DNA sequence assembly program. Genome research, 9(9), 868-877   DOI
42 Ipek M, Ipek A, and Simon PW. (2014) Testing the utility of matK and ITS DNA regions for discrimination of Allium species. Turkish journal of botany, 38(2), 203-212   DOI
43 Ito M, Kawamoto A, Kita Y, Yukawa T, and Kurita S. (1999) Phylogenetic relationships of Amaryllidaceae based on matK sequence data. Journal of Plant Research 112(2), 207-216   DOI
44 Khassanov FO, and Memariani F. (2006) Allium joharchii, a new species from Khorasan Province (Iran). Rostaniha 7(2), 63-69
45 Jing YU, Jian-Hua XUE, and Shi-Liang ZHOU. 2011. New universal matK primers for DNA barcoding angiosperms. Journal of Systematics and Evolution, 49(3), 176-181   DOI
46 Ince AG, Karaca M, Onus AN, and Bilgen M. (2005) Chloroplast matK gene phylogeny of some important species of plants. Akdeniz Universites Iziraatfakultesi Dergisi 18, 157-162
47 Kamelin R, and Seisums A. (1996) "Tri novykh vida roda Allium L." Alliaceae) iz yugo-zapadnoi Azii. (Tres species novae generis Allium L. (Alliaceae) ex Asia austro-occidentali.) Novosti Sistematiki Vysshikh Rastenii 30, 29-33
48 Khassanov FO, Noroozi J, and Akhani H. (2006) Two new species of the genus Allium (Alliaceae) from Iran. Rostaniha 7(2), 119-129
49 Kim YB, Ramekar RV, Choi SJ, Choi BG, Kim SW, Moon YK, and Choi IY. (2018) Molecular identification of Allium ochotense and Allium microdictyon using multiplex-PCR based on single nucleotide polymorphisms. Horticulture, Environment, and Biotechnology 59(6), 865-873   DOI
50 Matin F. (1992) The genus Allium in Iran, diversity, distribution and endemism. In The genus Allium-taxonomic problems and genetic resources. Proceedings of an international symposium held at Gatersleben 193-194
51 Memariani F, Joharchi MR, and Arjmandi AA. (2012) Allium aladaghense (Amaryllidaceae, Allieae), a new species of section Asteroprason from northeast of Iran. Phytotaxa 56(1), 28-34   DOI
52 Memariani F, Jouharchi M, and Khassanov FO. (2007) Allium L. subgen. Rhizirideum sensu lato in Iran, two new records and a synopsis of taxonomy and phytogeography
53 Nei M, and Kumar S. (2000) Molecular evolution and phylogenetics. Oxford university press
54 Neshati F, Zarre S, Fritsch RM, and Joharchi MR. (2009) Allium oriento-iranicum (Alliaceae), a new species from Iran. In Annales Botanici Fennici 46(6), 599-602   DOI
55 Nguyen NH, Driscoll HE, and Specht CD. (2008) A molecular phylogeny of the wild onions (Allium; Alliaceae) with a focus on the western North American center of diversity. Molecular Phylogenetics and Evolution 47(3), 1157-1172   DOI
56 Pang X, Song J, Zhu Y, Xu H, Huang L, and Chen S. (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27(2), 165-170   DOI
57 Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, and Boyce-Jacino M. (1999) Mining SNPs from EST databases. Genome Research (9), 167-174
58 Razyfard H, Zarre S, Fritsch RM, and Maroofi H. (2011) Four new species of Allium (Alliaceae) from Iran. In Annales Botanici Fennici 48(4), 352-361   DOI
59 Seberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, and Pillon Y. (2012) Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. American Journal of Botany 99(5), 875-889   DOI
60 Mashayekhi S, Zarre S, Fritsch RM, and Attar F. (2005) A new species of Allium subgen. Melanocrommyum sect. Compactoprason (Alliaceae) from Iran. Feddes Repertorium: Zeitschrift fur botanische Taxonomie und Geobotanik 116(3-4), 191-194   DOI
61 Son JH, Park KC, Kim TW, Park YJ, Kang JH, and Kim NS. (2010) Sequence diversification of 45S rRNA ITS, trnH-psbA spacer, and matK genic regions in several Allium species. Genes & Genomics 32(2), 165-172   DOI
62 Steele KP, and Vilgalys R. (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Systematic Botany 126-142
63 Stoeckle M. (2003) Taxonomy, DNA, and the bar code of life. BioScience 53(9), 796-797   DOI
64 Sykorova E, Fajkus J, Meznikova M, Lim KY, Neplechova K, Blattner FR, and Leitch AR. (2006) Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. American journal of botany 93(6), 814-823   DOI
65 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10), 2731-2739   DOI
66 Wendelbo P. (1971) Some distributional patterns within the Flora Iranica area. Plant Life of South West Asia
67 Tamura MN, Yamashita J, Fuse S, and Haraguchi M. (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. Journal of Plant Research 117(2), 109-120   DOI
68 Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, Chaudhary LB, and Roy S. (2013) The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PloS one 8(2), e57934   DOI
69 Veiskarami GH, Khodayari H, Heubl G, Weigend M, and Zarre S. (2019) Phylogenetic relationships in Allium sect. Allium (Amaryllidaceae, Allioideae) in Iran as inferred from nrDNA ITS, cpDNA rps16 and trnL-F sequences. Nordic Journal of Botany
70 von Berg GL, Samoylov A, Klaas M, and Hanelt P. (1996) Chloroplast DNA restriction analysis and the infrageneric grouping of Allium (Alliaceae). Plant systematics and evolution, 200(3-4), 253-261   DOI
71 Zhi-Yuan DU, Qimike A, Chun-Feng Y, Jin-Ming C, and Qing-Feng W. (2011) Testing four barcoding markers for species identification of Potamogetonaceae. Journal of Systematics and Evolution 49(3), 246-251   DOI