• Title/Summary/Keyword: Conservation state

Search Result 465, Processing Time 0.027 seconds

Performance Models of Multi-stage Bernoulli Lines with Multiple Product and Dedicated Buffers (다품종 제품과 전용 대기공간을 고려한 다단계 베르누이 라인을 위한 성능 모델)

  • Park, Kyungsu;Han, Jun-Hee;Kim, Woo-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.22-32
    • /
    • 2021
  • To meet rapidly changing market demands, manufacturers strive to increase both of productivity and diversity at the same time. As a part of those effort, they are applying flexible manufacturing systems that produce multiple types and/or options of products at a single production line. This paper studies such flexible manufacturing system with multiple types of products, multiple Bernoulli reliability machines and dedicated buffers between them for each of product types. As one of the prevalent control policies, priority based policy is applied at each machines to select the product to be processed. To analyze such system and its performance measures exactly, Markov chain models are applied. Because it is too complex to define all relative transient and its probabilities for each state, an algorithm to update transient state probability are introduced. Based on the steady state probability, some performance measures such as production rate, WIP-based measures, blocking probability and starvation probability are derived. Some system properties are also addressed. There is a property of non-conservation of flow, which means the product ratio at the input flow is not conserved at the succeeding flows. In addition, it is also found that increased buffer capacity does not guarantee improved production rate in this system.

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Using ICT for Mongolia's sustainable development in energy industry

  • Tungalag, Azjargal;Kim, Yun Seon
    • Asia Pacific Journal of Business Review
    • /
    • v.2 no.1
    • /
    • pp.21-52
    • /
    • 2017
  • Nowadays every technology is becoming smarter. Consequently, intensive use of ICT in the whole industries and cities enables a sustainable approach to meet enormous productivity, efficiency, transparency and conservation of natural recourses. Likewise, the role of ICT in terms of controlling, monitoring in the energy industry allows integrating potential renewables, bulk energy conservation and reliable optimized operation in the entire system. In this paper outlines challenging issues in renewable energy integration in Mongolia and proposes potential recommendations and conclusions. The author investigated the main technologies used in energy industry mainly smart grid, challenges and policy aspect in Mongolian energy sector by using the primary and secondary approach with case studies and literature based methodologies. Based on the policy aspect and current implementation of smart grid, the paper tries to address the readiness for the main application and future potential ICT driven applications. Furthermore, it concluded that ICT convergence is demanded to overcome the current vulnerabilities and significant momentum to leave behind by using its potential energy recourses and favorable geographical state. Policymakers may find this study useful, as it answers the question of whether ICT investment can ultimately reduce energy consumption and may aid in future planning. Even tough, in order to develop a smart grid and integrating renewables firstly set an appropriate market structure, ICT will key enabler to make energy system more profitable and sustainable. Regarding the result of this study, ICT deployment contribution is a huge demand for future opportunities energy in Mongolia.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

SILAGE FERMENTATION AND SILAGE ADDITIVES - Review -

  • Bolsen, K.K.;Ashbell, G.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.483-493
    • /
    • 1996
  • Advances in silage technology, including precision chop forage harvesters, improved silos, polyethylene sheeting, shear cutting silo unloaders, and the introduction of total mixed rations, have made silage the principal method of forage preservation. A better understanding of the biochemistry and microbiology of the four phases of the ensiling process has also led to the development of numerous silage additives. Although acids and acid salts still are used to ensile low-DM forages in wet climates, bacterial inoculants have become the most widely used silage additives in the past decade. Commercial inoculants can assure a rapid and efficient fermentation phase; however, in the future, these products also must contribute to other areas of silage management, including the inhibition of enterobacteria, clostridia, and yeasts and molds. Nonprotein nitrogen additives have the problems of handling, application, and reduced preservation efficiency, which have limited their wide spread use. Aerobic deterioration in the feedout phase continues to be a serious problem, especially in high-DM silages. The introduction of competitive strains of propionic acid-producing bacteria, which could assure aerobically stable silages, would improve most commercial additives. New technologies are needed that would allow the farmer to assess the chemical and microbial status of the silage crop on a given day and then use the appropriate additive(s).

Reconstruction of Thermodynamics by the Concept of Available Energy (II) - Thermodynamics of Real World - (가용 에너지에 의한 열역학의 재구성 (II) - 실제세계 열역학 -)

  • Jung, Pyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1573-1581
    • /
    • 2004
  • Thermodynamic principles are described with a new point of view. In present study, the interaction between two systems is focused instead of the behavior of a system in conventional thermodynamics. The state change of a system cannot occur by itself but it is the result of the interaction between systems. However, the interaction itself is also the result of another kind of interaction, the interaction between two interactions. To reconstruct thermodynamics with such a point of view, the reversible world is imagined, in which conservations and measurements are discussed. There exists a conserved quantity for each mode of reversible interaction. The conserved transferring quantity in the interaction between interactions is the effective work, which is supposed to be measurable and conserved in reversible world. Effective work is the primary concepts of energy. It is the key factor to explain measurements, energy conservation and energy dissipation. The concepts developed in reversible world are applied to the real world in which irreversible phenomena may occur. Irreversibility is the result of effective energy dissipation, in which effective work irreversibly changes into entropy. A quantitative relation between the disappearing effective work and the generated entropy is dissipation equation which is given by experiments. A special temperature scale to give a very simple type of the dissipation equation is the absolute temperature scale, which gives the conventional conservation of energy.

Proposition for Conservation of Traditional Costumes - Mainly on the replication of Milchanggun's Jobok - (복식유물의 보존을 위한 제안 - 밀창군 조복의 복제를 중심으로 -)

  • Chae, Ok-Ja;Park, Chi-Sun;Park, Sung-Sil
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.75-80
    • /
    • 2004
  • We proposed that the replicas be made as an alternative to achieve such reciprocal goals as the safe preservation of traditional costume relics and socio-educational realizations through exhibitions, etc., A replication was categorized for its purpose into a restoral replication a work based on the historical research of color and shapes as they were originally made and a current state replication . a production based on a minute record of the relics as they are excavated Then, we reported the reproduction process from the excavation to the exhibition on the excavated traditional costumes of Milchanggun's Jobok The purpose of a replication of relics is to record the relics experiencing the change resulted from the inevitable degeneration over time as organic cultural assets together with the substitution exhibition of relics and academic researches and so on. Accordingly, the above two methods are to be preceded by a deep and through research and study on the relics of replication. This study on the relics having an important cultural property value presents the preservation of tile cultural assets of traditional costume through the two replication processes and results and a flew pattern of exhibition.

  • PDF

A Numerical Study on the Formation Mechanism of a Mesoscale Low during East-Asia Winter Monsoon

  • Koo, Hyun-Suk;Kim, Hae-Dong;Kang, Sung-Dae;Shin, Dong-Wook
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.613-619
    • /
    • 2007
  • Mesoscale low is often observed over the downstream region of the East Sea (or, northwest coast off the Japan Islands) during East-Asia winter monsoon. The low system causes a heavy snowfall at the region. A series of numerical experiments were conducted with the aid of a regional model (MM5 ver. 3.5) to examine the formation mechanism of the mesoscale low. The following results were obtained: 1) A well-developed mesoscale low was simulated by the regional model under real topography, NCEP reanalysis, and OISST; 2) The mesoscale low was simulated under a zonally averaged SST without topography. This implies that the meridional gradient of SST is the main factor in the formation of a mesoscale low; 3) A thermal contrast ($>10^{\circ}C$) of land-sea and topography-induced disturbance served as the second important factor for the formation; 4) Paektu Mountain caused the surface wind to decelerate downstream, which created a more favorable environment for thermodynamic modification than that was found in a flat topography; and 5) The types of cumulus parameterizations did not affect the development of the mesoscale low.

The Development of Evaluation System for the Sustainable Conservation of Old Tree in Agricultural Landscape (농촌지역 노거수의 지속가능한 보전을 위한 평가체계 개발 연구)

  • Son, Jinkwan;Kim, Mi-heui;Lee, Siyoung;Kang, Donghyeon;Kim, Nam-Choon;Kang, Banghun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.59-69
    • /
    • 2016
  • This study was conducted to develope an evaluation system for sustainable conservation of old trees with historic and traditional values in rural areas. Existing evaluation system was modified through field application of 10 old trees and expert research twice for development of new evaluation system. 4 evaluation items in 10 evaluation items were deleted by first expert research. Some items are proposed to offer a figure explanation by second expert research. End-developed evaluation items are consisted of 6 items ((1) Ground State, (2) Blight, Harmful Insects, (3) Tree Form, (4) Canopy Vitality, (5) Bark, (6) Damage) reflecting the order of importance evaluation. Old trees evaluation system developed in this study is expected to be utilized continuously to conserve the old trees in the rural areas and gradually help to increases the historic and traditional values.

Establishing Policies towards Integrated Management of Soil Pollution and Damage (토양오염 및 훼손 통합관리를 위한 정책방향 설정)

  • Kim, Jong Sung;Park, Yoon-Sik;Lee, Gi-Ha;Hwang, Sang-Il;Yang, Jae E.
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.85-93
    • /
    • 2017
  • In this study, the concepts of soil degradation, soil pollution and soil damage are defined, and the domestic and foreign administrative systems related to soil pollution and soil damage management are analyzed. In case of foreign countries, laws and regulations on the soil conservation and soil damage management were analyzed. In case of Korea, the present state of the legal system governing soil pollution and damage management was analyzed in each aspect. Through this study, suggestions for amendments of relevant laws were proposed by establishing policy direction for integrated management of soil pollution and soil damage. The results of this study will provide a basis for integrated management of soil pollution and damage, and it can be utilized in establishing integrated management strategy of long term soil conservation and sustaninable soil development at national level.