• Title/Summary/Keyword: Connector design

Search Result 263, Processing Time 0.03 seconds

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

Study of Multi Anti-Reflection Coating Thin Film of Ferrule Facet Manufacture and Characteristics (광커넥터 패룰 단면의 다층 무반사 코팅 박막 제작 및 특성에 관한 연구)

  • Ki, Hyun-Chul;Yang, Mung-Hark;Kim, Sun-Hoon;Kim, Sang-Taek;Park, Kyung-Hee;Hong, Kyung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.408-409
    • /
    • 2007
  • Ferrule function have connect Optical Communication Cable. But Ferrule have important role that is decided transmission efficiency and information quality. Key-point of detailed drawing of ferrule is Anti-Reflection. In the study Broadband Anti-Reflection coating Film was design for ferrule of optical connector and deposited in low temperature by Ion-Assisted Deposition system. Optical thin film materials($Ta_2O_5$, $SiO_2$) were manufactured Index and Film thickness. $Ta_2O_5$ index is 2.123 ~ 2.125 and $SiO_2$ is 1.44 ~ 1.442. Reflection Loss of film deposited on Ferrule is 30.1[dB].

  • PDF

Dielectric Loss Tangent Measurement Using the $Al_{2}O_{3}$ Crystal Capacitor ($Al_{2}O_{3}$ Crystal Capacitor를 이용한 유전손실 측정)

  • Kim, Kwang-Soo;Her, In-Sung;Lee, Chong-Chan;Park, Dea-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.109-122
    • /
    • 2002
  • The standard capacitor must have not only precise value of the capacitance but also the basic properties of low dielectric loss tangent. In the reforming process of capacitors, the dielectric loss tangent must be also reformed. In this paper, the development of standard capacitors of 10 and 100pF for the dielectric loss tangent standard using $Al_{2}O_{3}$ Crystal and the measurement of dielectric loss tangent are discussed. The dielectric loss tangent depends upon the surface between electrode and dielectric in capacitor. With using the Electric Field Simulator, precise design values of electrode are simulated. For the purpose of measuring capacitance effect just in the dielectric, 3-Terminal and 4-Terminal Pair configuration are applied respectively at the electrode and the connector for the measuring equipment. As stated above method, the standard capacitors of 10 and l00pF for the establishment of the dielectric loss tangent standard using the $Al_{2}O_{3}$ Crystal are made with low dielectric loss tangent less than 10-4.

  • PDF

Happy Work : A Software Architecture Design Environment (Happy Work : 소프트웨어 구조 설계 환경의 개발)

  • 강병도
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.87-93
    • /
    • 2000
  • Recently Software Industry has tended to enhance the productivity and quality with using the software architecture in software development and administration. The research of software component technique and software development methodology are just doing and making many applications. The software architecture is considered as the essential element for analyzing and maintaining the entire structure with organizing the software into components and describing the relations with connectors. The software modeling methodology that we propose is generating Happy Work Language describing the software structure with the modeling tool as Happy Work. We can use System Context Diagram, Component Diagram, Component Sequence Diagram, and they are composed of four Elements as Users, Systems, Components, Connectors.

  • PDF

Behavior of headed shear stud connectors subjected to cyclic loading

  • Ding, Fa-xing;Yin, Guo-an;Wang, Hai-bo;Wang, Liping;Guo, Qiang
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.705-716
    • /
    • 2017
  • The objective of this study is to investigate the actual behavior of studs in structures under earthquake load through laboratory tests and numerical simulation. A test program including eighteen specimens was devised with consideration of different concrete strengths and stud diameters. Six of specimens were subjected to monotonically increasing loading while the others were subjected to cyclic loading. Mechanical behavior including the failure mechanism, load-slip relationship, stiffness degradation, energy dissipation and the damage accumulation was obtained from the test results. An accurate numerical model based on the ABAQUS software was developed and validated against the test results. The results obtained from the finite element (FE) model matched well with the experimental results. Furthermore, based on the experimental and numerical data, the design formulas for expressing the skeleton curve were proposed and the simplified hysteretic model of load versus displacement was then established. It is demonstrated that the proposed formulas and simplified hysteretic model have a good match with the test results.

Analytical study of composite beams with different arrangements of channel shear connectors

  • Fanaie, Nader;Esfahani, Farzaneh Ghalamzan;Soroushnia, Soheil
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.485-501
    • /
    • 2015
  • Channels are implemented in composite beams as shear connectors in two arrangements, face to face and back to back. No relevant explanation is found in the design codes to clarify the preference of the mentioned arrangements. Besides, the designers do not have a common opinion on this subject; i.e., some recommend the face to face and others, back to back status. In this research, channel shear connectors in composite beams are studied analytically for both arrangements using ABAQUS software. For this purpose, they have been modeled in simply supported beams in the arrangements of face to face and back to back; their effects on the crack initiation load of concrete slabs were monitored. The stiffness values of composite beams were also compared in the two arrangements using force-displacement curve; the results are relatively the same in both cases. Furthermore, the effects of compressive strength of concrete, channel size, length and spacing of channels as well as steel type of channels on the performance of composite beams have been investigated. According to the results obtained in this research, the face to face status shows better performance in comparison with that of back to back, considering the load of concrete fracturing.

HearCAM Embedded Platform Design (히어 캠 임베디드 플랫폼 설계)

  • Hong, Seon Hack;Cho, Kyung Soon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.79-87
    • /
    • 2014
  • In this paper, we implemented the HearCAM platform with Raspberry PI B+ model which is an open source platform. Raspberry PI B+ model consists of dual step-down (buck) power supply with polarity protection circuit and hot-swap protection, Broadcom SoC BCM2835 running at 700MHz, 512MB RAM solered on top of the Broadcom chip, and PI camera serial connector. In this paper, we used the Google speech recognition engine for recognizing the voice characteristics, and implemented the pattern matching with OpenCV software, and extended the functionality of speech ability with SVOX TTS(Text-to-speech) as the matching result talking to the microphone of users. And therefore we implemented the functions of the HearCAM for identifying the voice and pattern characteristics of target image scanning with PI camera with gathering the temperature sensor data under IoT environment. we implemented the speech recognition, pattern matching, and temperature sensor data logging with Wi-Fi wireless communication. And then we directly designed and made the shape of HearCAM with 3D printing technology.

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

Behavior Characteristics of Shear Connector for Composite Behavior of Steel Composite Columns (강합성 부재의 합성거동을 위한 전단 연결재의 거동 특성)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung Hwa;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1993-1999
    • /
    • 2013
  • Steel composite structures have been studied in various areas such as bridges, high rise buildings, and wind towers. They show excellent structural performance through overcoming of the weaknesses of steel and concrete. Although various methods were already developed to achieve full composite behavior between steel and concrete in flexural members, the number of studies regarding composite columns is quite limited. If slip occurs between concrete and steel under external loads, the performance of the composite column would be reduced significantly. Connection methods ensuring full composite action between steel and concrete must be suggested. This paper investigated about structural behavior of shear studs through a series of experimental tests. Extensive parameters were also performed to understand the effects of the diameter of stud, space of stud and height of concrete. The present study provides fundamental bases for further development of design method of shear studs in composite columns.