• Title/Summary/Keyword: Connector design

Search Result 263, Processing Time 0.028 seconds

A Study on the Characteristics of Wide Band Matching Connector in Round Coaxial Lines (원형 동축 선로에서 광대역 매칭 커넥터의 특성 연구)

  • Kim, Byeong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.152-157
    • /
    • 2012
  • In this paper, smoothing plane connector have been proposed as the vehicle connector for the wireless access in vehicular environments (5.925GHz) communication. This smoothing plane connector is designed by considering the properties of critical parameter like smoothing distance of start to end point of contact area. The design simulation and results can be used to determine the most suitable smoothing plane wire dimensions for vehicle communication connector. The optimized WAVE connector inserted the smoothing plane wire has insertion loss less than-0.17dB at 5.925GHz. It provides 20% of insertion loss with good performance. Therefore, the simulated results can be effectively used for optimum design of high frequency connector for vehicle communication.

Connector Performance Improvement of Automobile Wiring Harness System using CAE Analysis (CAE 해석을 통한 차량 전장시스템의 커넥터 성능향상)

  • Kim, Jun-Hyung;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.525-530
    • /
    • 2003
  • Recently an automobile industry is concerned about an automobile wiring harness system. It means that development of component modules is on the increase. An importance of the connector in one part of the modules will be enhanced. A connector is made of P.B.T. (Poly Butylene Terephthalate). PBT is resistant to the high temperature. This paper deals with thermal strain of connector. According as temperature increase, effects of the temperature and thermal strains give an analysis of the deformation using ABAQUS. This apparent thermal strain results actually from the variation of temperature. Being based on this analysis, axiomatic design applies to design parameters of the connector. As compared with CAE analysis, a performance improvement makes certain of the truth of the matter.

  • PDF

Effects of Design Variables on Compression Rate of Wire in Connector Crimping Process of Wire Harness Using FEM (와이어 하네스의 압착공정에서 설계변수가 압축률에 미치는 영향 연구)

  • Gu, S.M.;Choi, H.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • Recently industry of motor vehicle is making a gradual progress of automotive electric components. According to this step, wire harness equipped at motor vehicle is also increased. The most important component at the wire harness is electric connector. At the manufacturing process of electric connector, exactly at the crimping process, design variables, such as clamping-height, clamping-width and clamping die shape are critical parameters to assure satisfactory harness shape in clamping process of electric connector. In this study we have performed FEM simulation for clamping process and clarified the effect of design variables on compression rate of wire.

A Study on the Connector of Floating Platform based on Concrete Structures (콘크리트 구조물 기반 플로팅 플랫폼 연결에 관한 연구)

  • Boldbaatar, Tumenjargal;Yoon, Dae-Gwun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • This study is about the connector of the floating platform in order to ensure safety due to various climate changes. The purpose of this study is to recommend the connector model of floating platform based on concrete structures after reviewing the literatures related in establishing floating structure in case of various climate changes in domestic coast. This study introduces the concept generation, existing model, detailed design and evaluation including current and future development of the technologies of marina floating platform connector based on concrete structures. The results from the research show that the analysed connector design (Rigid Pontoon Connector) provides a highly efficient and practical solution to facilitate connection of stable floating platform.

A study on the characteristics of wide bandwidth connector for automotive communication (자동차 통신을 위한 광대역 커넥터 특성 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • In this paper, helical wave wire have been proposed as the vehicle connector for the wireless access in vehicular environments(5.925GHz) communication. This helical slow wave connector is design by considering the properties of critical parameter like helical mean radius, helical pitch, helical wire radius and distance of helical wire to shield. The design simulation and results can be used to determine the most suitable helical wave wire dimensions for vehicle communication connector. The optimized WAVE connector inserted the helical wave wire has insertion loss less than -0.76dB at 5.925GHz. It provides 31% of insertion loss with good performance. Therefore, the simulated results can be effectively used for optimum design of high frequency connector for vehicle communication.

Push-out tests on stud shear connectors with constrained structure of steel-concrete composite beams

  • Qi, Jingjing;Xie, Zuwei;Cao, Hua;Huang, Zhi;Lv, Weirong;Shi, Weihua
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.789-798
    • /
    • 2022
  • The stud shear connector is the main force transfer member in the steel-concrete composite member, and the mechanical behavior is very complicated in the concrete. The concrete around the stud is subjected to the pry-out local pressure concentration of the stud, which can easily produce splitting mirco-cracks. In order to solve the problem of pry-out local splitting of stud shear connector, a kind of stud shear connector with constraint measure is proposed in this paper. Through the push-out test, the interface shear behavior of the new stud shear connector between steel and concrete flange plate was studied, and the difference between the new stud shear connector and the traditional stud connector was compared. The results show that the stud shear connector with constraint measure can effectively avoid the adverse effect of local pressure splitting by relying on its own constraint measure. The shear stiffness of the interface between steel and concrete flange plates is greatly improved, which provides a theoretical basis for the design of strong connection coefficient of steel-concrete composite structures.

A Study of Design and Analysis on the High-Speed Serial Interface Connector (고속 직렬 인터페이스 커넥터의 설계 및 분석에 대한 연구)

  • Lee, Hosang;Shin, Jaeyoung;Choi, Daeil;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1084-1096
    • /
    • 2016
  • This paper presents method of design and analysis of a high-speed serial interface connector with a data rate of 12.5 Gbps. A high-speed serial interface connector is composed of various material and complex structures. It is very difficult to match the impedance of each discontinuous portion of connector. Therefore, this paper proposes the structure of a connector line that be simplified a connector. In the structure of proposed connector line, this research presents a method for extracting R, L, C and G parameters, analyzing the differential mode impedance, and minimizing the impedance discontinuity using time domain transmissometry and time domain reflectometry. This paper applies the proposed methods in the connector line to the high-speed serial interface connector. The proposed high-speed serial interface connector, which consists of forty-four pins, is analyzed signal transmission characteristics by changing the width and spacing of the four pins. According to the analysis result, as the width of the ground pin increases, the impedance decreases slightly. And as the distance between the ground pin and the signal pin increases, the impedance increases. In addition, as the width of the signal pin increases, the impedance decreases. And as the distance between the signal pin and the signal pin increases, the impedance decreases. The impedance characteristic of initial connector presents ranges from 96 to $139{\Omega}$. Impedance characteristic after applying the structure of proposed connector is shown as a value between 92.6 to $107.5{\Omega}$. This value satisfies the design objective $100{\Omega}{\pm}10%$.

Shear Resistance of BESTOBEAM Shear Connector According to the Length (BESTOBEAM 전단연결재의 길이에 따른 전단 내력 평가)

  • Ahn, Hyung Joon;Jung, In Yong;Kim, Young Ju;Hwang, Jae Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.483-491
    • /
    • 2015
  • Shear resistance of BESTOBEAM, which has angle as shear connector and was developed with purpose of easy construction, was tested. With the test results shear resistance design equation was proposed. Unlike angle connector of Eurocode 4, BESTO BEMA shear connector behaves like fixed-end beam. Therefor longer span of the shear connector the lower shear resistance it has. As a result, shear resistance of BESTOBEAM shear connector according to its length tends to decrease as its length gets longer. The authors proposed design equation of angle shear connector sased on the test results. The results from the test and the proposed equation match within 10% error range. Therefore the proposed equation can be used for designing shear connector of BESTOBEAM.

A Development of the Design Guidelines for Connecting Roads in Highway Rest Area (고속도로 휴게소 연결로 설계 기준 설정에 관한 연구)

  • Lee, Choulsoo;Won, Jaimu
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.143-154
    • /
    • 2013
  • PURPOSES: Design of approach roads of rest areas in highway has many drawbacks such as geometric design elements. There has been traffic accidents occured in these approach roads of rest areas. Thus, design criteria is required in order to protect accidents from being occurred. In case of Korea, geometric structure design criteria of entry facilities, such as toll-gate, interchange, junction etc was established. However there are no presence in a detailed standards for geometric structure of the rest area which affiliated road facilities. METHODS: In this study, analytic on accidents was carried out in regards to the entry of geometric structure of resting areas by utilizing a sight survey and an investigation research of traffic accidents. The survey was targeting 135 general service areas. Collisions with physical channelization and safety facilities occurred due to speeding, rapid entry, and etc at the entrance nose section. At the entrance connector roads, accidents caused by speeding, negligence, over-operation of handle of drivers were main reason of accidents. Discriminant analysis were conducted about geometric elements to distinguish influencing factors for traffic accidents. the lengths and access angles of the entrance connector roads were regarded as to have the high relation with traffic accidents. RESULTS: After classifying the design section of resting areas' entry as well as derive design elements on each section, a speed measurement by targeting entry of rest areas and car behavior surveys were performed, then each element's minimum standard was derived through the analyses. According to the speeds at the starting/end point of entrance connector road, the range of the junction setting angle of the entrance connector road is defined as $12^{\circ}{\sim}17^{\circ}$ and the connector length model was suggested. CONCLUSIONS: Suggest improvement plans for existing rest areas that can be applied realistically. This should be corresponded to the standards of entry and exit of developed rest areas.

Design of Variable Power Distributor and Waveguide Connecting Structure for Wireless Microwave Power Transmission in a Building (실내 마이크로파 배전 전송계를 위한 가변전력분배기와 도파관의 결합구조 설계)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1477-1482
    • /
    • 2012
  • This paper deals with a new variable microwave power distributor and a connector between a deck plate and a input power waveguide for indoor microwave wireless power transmission. We design a new type connector built in the 3-stage coaxial line structure, and calculate the return loss of the connector at 2.45GHz. Newly designed connector shows the excellent return loss performance less than -30dB at the operating frequency of 2.45GHz. And we show a power distributor in which the dividing ratio of the power is controlled mechanically by three rotary fins. The distributor can control the dividing power from 4.5% to 58% with the variance of 5% output power. The experimentally tested results of the distributor are good agreement with the simulation within the return loss of 1%.