• Title/Summary/Keyword: Connection reliability

Search Result 340, Processing Time 0.024 seconds

Discriminating a User Indirect Trust Considering Connection Relationship and Influence of Users in Social Networks (소셜 네트워크에서 연결 관계와 영향력을 고려한 사용자 간접 신뢰도 판별)

  • Seo, Indeok;Song, Heesub;Jeong, Jaeyun;Park, Jaeyeol;Kim, Minyoung;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.280-291
    • /
    • 2018
  • Recently, various interactions have been actively conducted through sharing and expressing opinions among users in social networks. In this process, since malicious users and fault information spread misinformation, trust is reduced irrespective of their will. To solve this problem, studies have been conducted to determine the trust of a user through direct-connected users. In this paper, we propose a enhanced user indirect trust discrimination scheme considering the connection relation and influence of users. The proposed indirect trust computation scheme derives the user's area of interest through user interaction and reconstructs the existing network considering the user connection relationship. The final indirect trust is also detected by determining whether the user is a malicious user through the influence of the user. Through various performance evaluations, we show that the proposed scheme achieves better performance than the existing method.

SmartCAC : Novel Distributed Connection Admission Control Framework for Heterogeneous Networks (이종 네트워크를 위한 분산처리 방식의 효율적인 호 수락 제어 구조)

  • Kim, Hyo-Eun;Kim, Won-Tae;Kang, Eun-Hyun;Park, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.70-80
    • /
    • 2007
  • For supporting various mobile networks, this paper proposes a framework of distributed connection admission control, named SmartCAC. Especially, intelligent CAC operations are adopted in terms of interoperation between mobile nodes and mobile networks. This scheme does not need to correct information between networks. Basically vertical handover call can use guard channel that was reserved for handoff, because SmartCAC addresses the identification between vertical handover call and new call, delay and reliability as requirement of QoS for efficient connection control. The scheme also uses mobile terminal speed for network filtering. Especially an extended protocol is proposed to give different network states information to mobile nodes because there have been no ways for mobile nodes to compare the states of different networks. Sophisticated simulation study is performed in order to evaluate SmartCAC in terms of signaling cost. As a result, signaling cost of ours is up to 96% better than that of the existing scheme.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

  • Azandariani, Mojtaba Gorji;Gholhaki, Majid;Kafi, Mohammad Ali;Zirakian, Tadeh;Khan, Afrasyab;Abdolmaleki, Hamid;Shojaeifar, Hamid
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.109-123
    • /
    • 2021
  • This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Development of High Reliability Monitoring and Control System for Platform Screen Door (승강장 스크린 도어(PSD)에 대한 고 신뢰성의 감시 및 제어 시스템 개발)

  • Kim, Jin-Sik;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.158-162
    • /
    • 2010
  • PSD is automatically opened and closed when subway train arrive on the station. This system was designed to control electric automatic system. These doors will provide passenger safety, energy saving and a good environment in subway. The monitoring and control systems of PSD are configured so that they can be operated in automatic mode in connection with ATO through the composite control panel in the station control room. The objective of this paper is to obtain high reliability that is essential for monitoring and control systems of PSD. The power supply is based on protection circuit using DC power bridge from two UPS. Also, stable communication system consists of CAN communication line redundancy and RF cross protection algorithm. Monitoring state display results show the validity of the proposed high reliability monitoring and control systems of PSD.

An IPLAN-based Program for Technical Assessment of New-connected Facilities (IPLAN을 이용한 전력설비의 계통접속 기술검토 프로그램 개발)

  • Ryu, Heon-Su;Bae, Joo-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.220-222
    • /
    • 2005
  • When a large-scale load or a new generator is connected to power systems, KPX assesses the effect of the connection on power systems to keep security and reliability standards. As the number of connection requests has been increased, KPX is spending much time for technical assessments of the requests. This paper developed an automatic assessment program to reduce analysis time and enhance simulation accuracy. The program is based on IPLAN and. can be applied to both load and generator network connection requests.

  • PDF

Synchronization on the Points of Turn -off Time of Series-Connected Power Semiconductor Devices Using the Miller Effect (전력용 반도체 소자의 직렬연결시 밀러효과를 이용한 소호시점 동기화 알고리즘)

  • 심은용;서범석;이택기;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.237-243
    • /
    • 1992
  • The large value of the snubber capacitor is needed to protect the devices in high voltage converters using series connected power semiconductors. But that results in more losses and longer commutation time. So, new technique of series connection is required, which can minimize the value of snubber capacitor and also promote the reliability of high voltage converters. We study on the switching characteristics of series connected power semiconductors and then propose a novel switching algorithm for series-connection which is able to implement not only the dynamic voltage balancing in spite of the differerce of switching characteristics, but the minimization of the value of snubber capacitor, through the change of the value of snubber capacitor by Miller effect. Finally, we illustrate the validity of this synchronization by computer simulation and experimental results.

  • PDF

The structural detailing effect on seismic behavior of steel moment resisting connections

  • Farrokhi, Hooman;Danesh, F. Ahmadi;Eshghi, Sassan
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.617-630
    • /
    • 2010
  • Different types of moment resisting connections are commonly used to transfer the induced seismic moments between frame elements in an earthquake resisting structure. The local connection behavior may drastically affect the global seismic response of the structure. In this study, the finite element and experimental seismic investigations are implemented on two frequently used connection type to evaluate the local behavior and to reveal the failure modes. An alternative connection type is then proposed to eliminate the unfavorable brittle fracture modes resulted from probable poor welding quality. This will develop a reliable predefined ductile plastic mechanism forming away from the critical locations. Employing this technique, the structural reliability of the moment resisting connections shall be improved by achieving a controllable energy dissipation source in form of yielding of the cover plates.

Reliability Analysis of Temporary Structures Considering Uncertainty in Rotational Stiffness at Member Joints (부재 연결부 회전 강성의 불확실성을 고려한 가설 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.87-94
    • /
    • 2019
  • This study deals with the reliability analysis approach of the temporary structure that can consider the uncertainty in rotational stiffness at the joints of the members, for which the semi-rigid connections are modelled as rotational spring and its coefficient is treated as a random variable following uniform distribution. In addition, this study introduces a computational procedure of the effective length coefficient for more accurate buckling load according to connection conditions of the supporting members attached to the joint. From the results of this study, it can be seen that the failure probability of the joint-hinge model (Case 1) presented in the design standard is higher than that of the practical model (Case 5) considering the rotational stiffness at the joints. This implies that the design standard leads to a conservative design of the temporary structure. The results also confirmed that the failure probability of the vertical member, i.e., the most critical member, can be further reduced when the base connection is provided with a fixed end. The comparative results between FORM, SORM and MCS further demonstrated that FORM can have a high level of numerical efficiency while ensuring the accuracy of the solution, compared with SORM and MCS. Based on these results, the proposed approach can be used as an accurate and efficient reliability analysis method of the three dimensional temporary structure.