• Title/Summary/Keyword: Connection Response Time

Search Result 141, Processing Time 0.024 seconds

Connection Scheduling for Improving the Response Time (응답시간 향상을 위한 커넥션 스케줄링 기법)

  • Bang, Ji-Ho;Ha, Rhan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.69-78
    • /
    • 2006
  • The client request scheduling techniques for web server can classified into the scheduling techniques considering a document size to be requested and not. The scheduling techniques considering a document site to be requested provides a better average response time than another As the size-based SRPT(Shortest Remaining Processing Time first) is typical, and the most of scheduling techniques considering a web document size are based on SRPT. Most of existing researches, however, have not considered the feature of HTTP/1.1 which enable the clients to request concurrent multiple inlined-contents in a HTML document via each connection. In this paper we propose a connection scheduling technique with the scheduling window which provides a better response time in HTTP/1.1. The experimental results show that the performance with the proposed approach is improved about $10\%$ more than the connection scheduling with SRPT.

Seismic response analysis of steel frames with post-Northridge connection

  • Mehrabian, Ali;Haldar, Achintya;Reyes-Salazar, Alfredo
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.271-287
    • /
    • 2005
  • The seismic behavior of two steel moment-resisting frames, which satisfy all the current seismic design requirements, are evaluated and compared in the presence of pre-Northridge connections denoted as BWWF and an improved post-Northridge connections denoted as BWWF-AD. Pre-Northridge connections are modeled first as fully restrained (FR) type. Then they are considered to be partially restrained (PR) to model their behavior more realistically. The improved post-Northridge connections are modeled as PR type, as proposed by the authors. A sophisticated nonlinear time-domain finite element program developed by the authors is used for the response evaluation of the frames in terms of the overall rotation of the connections and the maximum drift. The frames are excited by ten recorded earthquake time histories. These time histories are then scaled up to produce some relevant response characteristics. The behaviors of the frames are studied comprehensively with the help of 120 analyses. Following important observations are made. The frames produced essentially similar rotation and drift for the connections modeled as FR type and PR type represented by BWWF-AD indicating that the presence of slots in the web of beams in BWWF-AD is not detrimental to the overall response behavior. When the lateral displacements of the frames are significantly large, the responses are improved if BWWF-AD type connections are used in the frames. This study analytically confirms many desirable features of BWWF-AD connections. PR frames have longer periods of vibration in comparison to FR frames and may attract lower inertia forces. However, calculated periods of the frames of this study using FEMA 350 empirical equation is longer than those calculated using dynamic characteristics of the frames. This may result in even lower design forces and may adversely influence the design.

Response Characteristic Analysis of ZnO Varistors by the Conductive E1 Pulse (전도성 E1 펄스에 대한 ZnO 바리스터의 동작특성 분석)

  • Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.241-245
    • /
    • 2019
  • This work presents the response characteristics of a ZnO varistor to conductive EMP. An E1 pulse, standardized to MIL-STD-188-125-1, was applied to the varistors wherein the residual current and response times were measured with the applied E1 pulse current. Additionally, the response time was measured according to the length of the connection path. Consequently, the amplitude of the residual voltage through the ZnO varistors was increased with increasing amplitude of the applied E1 pulse current. As the length of the connection path increased, the operating response time and residual peak voltage also increased. These results indicate that the response characteristics of ZnO varistors can be applied to basic data to support the use of varistors as a protective measure against conductive EMP.

Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections

  • Hadianfard, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.675-689
    • /
    • 2012
  • Most connections of steel structures exhibit flexible behaviour under cyclic loading. The flexible connections can be assumed as nonlinear rotational springs attached to the ends of each beam. The nonlinear behaviour of the connections can be considered by suitable moment-rotation relationship. Time-history analysis by direct integration method can be used as a powerful technique to determine the nonlinear dynamic response of the structure. In conventional numerical integration, the response is evaluated for a series of short time increments. The limitations on the size of time intervals can be removed by using Chen and Robinson improved time history analysis method, in which the integrated displacements are used as the new variables in integrated equation of motion. The proposed method permits longer time intervals and reduces the computational works. In this paper the nonlinearity behaviour of the structure is summarized on the connections, and the step by step improved time-history analysis is used to calculate the dynamic response of the structure. Several numerical calculations which indicate the applicability and advantages of the proposed methodology are presented. These calculations illustrate the importance of the effect of the nonlinear behaviour of the flexible connections in the calculation of the dynamic response of steel frames.

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.

Heterogeneous Study of Voice Communication Delay According to Connection Delay Difference of Heterogeneous Radios (이종 무전기의 통신접속지연차에 따른 음성통신성능 개선 연구)

  • Park, Jin-Hee;Lee, Soon-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.29-35
    • /
    • 2013
  • The heterogeneous emergency communication radios is used at disaster management agencies of Korea to response activity in the event of disaster. The compensation method by communication connection time difference is necessary to seamless voice communication because radios have different communication method and delay. In this paper, we suggested solution for voice transmission chance and data loss problem.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

A Load Distribution Technique of Web Clustering System based on the Real Time Status of Real Server (웹 클러스터 시스템의 실시간 서버 상태를 기반으로 한 부하분산 방안)

  • Youn, Chun-Kyun
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.427-432
    • /
    • 2005
  • I studied about existent load distribution algorithms and the WLC(Weighted Least Connection) algerian that is using much at present to distribute the connection request of users to real servers efficiently in web cluster system. The efficiency of web cluster system is fallen by load imbalance between servers, because there is problem In inaccurate load status measuring of servers and measuring timing at these load distribution algorithms. In this paper, I suggest an algorithm that distributes load base on various load state of servers by real time using broadcasting RPC(Remote Procedure Call) when a user requests connection, and implement a prototype and experiment its performance. The experiment result shows that load imbalance phenomenon between reai sowers was improved greatly than existing method, and performance of web cluster system was improved by efficiency that response time is shortened.