• Title/Summary/Keyword: Connecting space

Search Result 356, Processing Time 0.031 seconds

Kinematic and Structural Analysis of a 6-DOF Manipulator for Narrow-space Work (협소 공간 작업을 위한 6축 다관절 로봇의 기구학 및 구조해석)

  • Chung, Seong Youb;Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.666-672
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator for narrow workspaces in press forming processes, such as placing PEM nuts on the bottom of a chassis. In this paper, kinematic analysis was performed for the position control of the manipulator, along with structural analyses for position accuracy with different payloads. First, the Denavit-Hatenberg (DH) parameters are defined, and then the forward and backward kinematic equations are presented using the DH parameters. The kinematic model was verified by visual simulation using Coppelia Robotics' virtual robot experimentation platform (V-REP). Position accuracy analysis was performed through structural analyses of deflection due to self-weight and deflection under full payload (5 kgf) in fully opened and fully folded states. The maximum generated stress was 22.05 MPa in the link connecting axes 2 and 3, which was confirmed to be structurally safe when considering the materials of the parts.

Development of an Advanced Rotorcraft Preliminary Design Framework

  • Lim, Jae-Hoon;Shin, Sang-Joon;Kim, June-Mo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • Various modules are generally combined with one another in order to perform rotorcraft preliminary design and its optimization. At the stage of the preliminary design, analysis fidelity is less important than the rapid assessment of a design is. Most of the previous researchers attempted to implement sophisticated applications in order to increase the fidelity of analysis, but the present paper focuses on a rapid assessment while keeping the similar level of fidelity. Each small-sized module will be controlled by an externally-operated global optimization module. Results from each module are automatically handled from one discipline to another which reduces the amount of computational effort and time greatly when compared with manual execution. Automatically handled process decreases computational cycle and time by factor of approximately two. Previous researchers and the rotorcraft industries developed their own integrated analysis for rotorcraft design task, such as HESCOMP, VASCOMP, and RWSIZE. When a specific mission profile is given to these programs, those will estimate the aircraft size, performance, rotor performance, component weight, and other aspects. Such results can become good sources for the supplemental analysis in terms of stability, handling qualities, and cost. If the results do not satisfy the stability criteria or other constraints, additional sizing processes may be used to re-evaluate rotorcraft size based on the result from stability analysis. Trade-off study can be conducted by connecting disciplines, and it is an important advantage in a preliminary design study. In this paper among the existing rotorcraft design programs, an adequate program is selected for a baseline of the design framework, and modularization strategy will be applied and further improvements for each module be pursued.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

A Reconstructive Study on the Urban Structure of the Original Masan in the Colonial Era. (일제강점기 원마산(原馬山)의 도시공간 변천과정 연구 -1912년부터 1945년까지 -)

  • Heo, Jeong-Do;Lee, Kyu-Sung
    • Journal of architectural history
    • /
    • v.11 no.2 s.30
    • /
    • pp.57-74
    • /
    • 2002
  • This study aims at examining the change of the urban space of the original Masan Area during the Japanese-forced colonial era of Korea(1910-1945) after circa 1912. That year is very important because the modern map of land was introduced. The land area of the original Masan was about $17,000m^2$ composed of small houses and shops. Colonial era could be divided into 3 periods according to the change of colonial policies. And the change of the urban space is examined according to these 3 periods. During the 1st period(1911-1920) the following 3 development occurred. 1. Land was reclaimed along the coast line by a Japanese civilian named 'Bakgan'. And his ownership of land continued until 1945. 2. A government ware house(Cho-Chang), which was the symbol of Masan harbor, was demolished and the land was divided into small lots. 3. Main artery and trunk roads(14-15m wide) were built replacing 2-3m wide narrow roads and connected to the reclamation land. During the 2nd period(1921-1930), also land reclamation and road making was more frequently carried out. And the infrastructure of the city was developed gradually. Also public buildings began to be built. Modern roads were constructed city-wide not only in the center of the city. In the 3rd period reclamation was at its peak. Especially Sinpo-Dong area located at the middle of New and original parts of Masan was reclaimed connecting 2 parts and making of a central Masan. During that time original Masan was enlarged because of reclamation. The coast line of Masan became straight from e original organic shape. Roads were constructed in the outskirts also. The size of land lots were more or less the same during the colonial era. But gradually lots were divided into smaller lots. Japanese entrepreneurs gradually occupied the central area of the original Masan until the liberation day. But Chinese ownership of land gradually diminished.

  • PDF

Monitoring Network Security Situation Based on Flow Visualization (플로우 시각화 기반의 네트워크 보안 상황 감시)

  • Chang, Beom-Hwan
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.41-48
    • /
    • 2016
  • In this paper we propose a new method of security visualization, VisFlow, using traffic flows to solve the problems of existing traffic flows based visualization techniques that were a loss of end-to-end semantics of communication, reflection problem by symmetrical address coordinates space, and intuitive loss problem in mass of traffic. VisFlow, a simple and effective security visualization interface, can do a real-time analysis and monitoring the situation in the managed network with visualizing a variety of network behavior not seen in the individual traffic data that can be shaped into patterns. This is a way to increase the intuitiveness and usability by identifying the role of nodes and by visualizing the highlighted or simplified information based on their importance in 2D/3D space. In addition, it monitor the network security situation as a way to increase the informational effectively using the asymmetrical connecting line based on IP addresses between pairs of nodes. Administrator can do a real-time analysis and monitoring the situation in the managed network using VisFlow, it makes to effectively investigate the massive traffic data and is easy to intuitively understand the entire network situation.

A Modfication Study on Horizontal Earth Pressure in the Symmetrically Sloped Backfilled Space (대칭적으로 경사진 되메움된 공간에서의 수평토압에 대한 수정연구)

  • Moon, Chang-Yeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • Marston (1913) and Spangler's (1982) theory was widely used in the analysis of the earth pressure of the narrow and long excavated ditch type backfield ground. Their theory was more clearly explained by expressing the minor principle stress arch connecting the minor principle stress link induced by interaction between the excavated wall surface and the backfilled earth. which was done by R.L. Handy(1985). Later C.G. Kellogg(1993) extended the study from vertical symmetric to incline symmetric in the backfill space type research. In the C.G. Kellogg's study, it is assumed that the resistance of wall friction on the sloping wall could be replaced by the internal friction angle in the sloping section bottom. In the study, the resistance of wall friction in the sloping section bottom, which was applied by C.G. Kellogg, would be different in magnitude with the resistance of wall friction in sloping section. The magnitude is expected to affect in the earth pressure calculation and verified by the soil test box, the C.G. Kellogg's theory, the numerical analysis and the modified C.G. Kellogg's theory considering the friction resistance to influence the incline wall.

  • PDF

Policies of Trajectory Clustering in Index based on R-trees for Moving Objects (이동체를 위한 R-트리 기반 색인에서의 궤적 클러스터링 정책)

  • Ban ChaeHoon;Kim JinGon;Jun BongGi;Hong BongHee
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.507-520
    • /
    • 2005
  • The R-trees are usually used for an index of trajectories in moving-objects databases. However, they need to access a number of nodes to trace same trajectories because of considering only a spatial proximity. Overlaps and dead spaces should be minimized to enhance the performance of range queries in moving-objects indexes. Trajectories of moving-objects should be preserved to enhance the performance of the trajectory queries. In this paper, we propose the TP3DR-tree(Trajectory Preserved 3DR-tree) using clusters of trajectories for range and trajectory queries. The TP3DR-tree uses two split policies: one is a spatial splitting that splits the same trajectory by clustering and the other is a time splitting that increases space utilization. In addition, we use connecting information in non-leaf nodes to enhance the performance of combined-queries. Our experiments show that the new index outperforms the others in processing queries on various datasets.

Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations (다수의 위협과 복수의 목적지가 존재하는 임무에서 복수 무인기의 생존율 극대화를 위한 최적 경로 계획 및 분석)

  • Jeong, Seongsik;Jang, Dae-Sung;Park, Hyunjin;Seong, Taehyun;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.488-496
    • /
    • 2015
  • This paper proposes a framework to determine the routes of multiple unmanned aerial vehicles (UAVs) to conduct multiple tasks in different locations considering the survivability of the vehicles. The routing problem can be formulated as the vehicle routing problem (VRP) with different cost matrices representing the trade-off between the safety of the UAVs and the mission completion time. The threat level for a UAV at a certain location was modeled considering the detection probability and the shoot-down probability. The minimal-cost path connecting two locations considering the threat level and the flight distance was obtained using the Dijkstra algorithm in hexagonal cells. A case study for determining the optimal routes for a persistent multi-UAVs surveillance and reconnaissance missions given multiple enemy bases was conducted and its results were discussed.

UAV LRU Layout Optimizing Using Genetic Algorithm (유전알고리즘을 이용한 무인항공기 장비 배치 최적 설계)

  • Back, Sunwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.621-629
    • /
    • 2020
  • LRU layout is a complex problem that requires consideration of various criteria such as airworthiness, performance, maintainability and environmental requirements. As aircraft functions become more complex, the necessary equipment is increasing, and unmanned aerial vehicles are equipped with more equipment as a substitute for pilots. Due to the complexity of the problem, the increase in the number of equipment, and the limited development period, the placement of equipment is largely dependent on the engineer's insight and experience. For optimization, quantitative criteria are required for evaluation, but criteria such as safety, performance, and maintainability are difficult to quantitatively compare or have limitations. In this study, we consider the installation and maintenance of the equipment, simplify the deployment model to the traveling salesman problem, Optimization was performed using a genetic algorithm to minimize the weight of the connecting cable between the equipment. When the optimization results were compared with the global calculations, the same results were obtained with less time required, and the improvement was compared with the heuristic.

The design of 4s-van for GIS DB construction (GIS DB 구축을 위한 4S-VAN 설계)

  • Lee, Seung-Yong;Kim, Seong-Baek;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.89-97
    • /
    • 2002
  • We have developed the 45-Van system in order to maximize the interoperability of spatial data in 45(GNSS, SIIS, GIS, ITS) by sharing and providing spatial data of remote site. The 4S-Van system enables to acquisition and production of information for GIS database and the accurate position information by combining and connecting GPS/IMU, laser, CCD(charged-coupled device) image, and wireless telecommunication technology. That is, 4S-Van system measures its position and attitude using integrated GPS/IMU and takes two photographs of the front scene by two CCD cameras, analyzes position of objects by space intersection method, and constructs database that has compatibility with existing vector database system. Furthermore, infrared camera and wireless communication technique can be applied to the 4S-Van for a variety of applications. In this paper, we discuss the design and functions of 4S-Van that is equipped with GPS, CCD camera, and IMU.

  • PDF