• Title/Summary/Keyword: Connected-pile foundation

Search Result 21, Processing Time 0.028 seconds

The Behavior and Resistance of Connected-pile Foundations for Transmission Tower from In-situ Lateral Load Tests (송전용 철탑기초의 현장수평재하시험을 통한 연결형 말뚝기초의 거동 및 지지력특성)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Kim, Dae-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.57-70
    • /
    • 2012
  • For soft ground, a pile foundation is typically used as a substructure of transmission tower. However, differential settlement between the foundations can cause structural damage of transmission tower. The connected-pile foundation is a type of group foundation consisting of four foundations connected with beams, and it was suggested in USA and Japan. In this study, a series of 1/8 scale model pile tests were performed to investigate the effect of load direction and stiffness of connecting beam on the responses of connected-pile foundation. As a result, the load capacities of the connected-pile foundation were larger than those of the conventional group pile foundation. For example, under the given test conditions in this paper, the resistibility against differential settlement was improved significantly for connected-pile foundation and its efficiency was maximized when the stiffness of connecting beams is about 25% of the mat foundation.

Resistance Increasing Factor of Connected-pile Foundation for Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 말뚝기초의 저항력증가계수)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.31-41
    • /
    • 2012
  • Pile foundation for transmission tower constructed in weak ground can cause the damage of the tower due to the different settlement between the foundations. In Japan and USA, connected-pile foundations whose 4 foundations are connected each other by beams were used for transmission tower (TEPCO 1988, IEEE 2001). Resistance increasing factors for connected-pile foundation signify increasing amount of resistance due to the effect of connected-pile material. In this study, we performed model lateral load tests of connected-pile foundations for transmission tower and found the resistance increasing factors for connected-pile foundation. The tests were performed in silty clay, and the resistance increasing factors were founded in various conditions that lateral load directions and height, the stiffness of beams in the connected-pile foundations were changed. The resistance increasing factors from our research were presented as a function of normal lateral loading height and normal stiffness of the connected-pile material. The resistances which were estimated from the resistance increasing factors were similar to measured values.

Analysis of Characteristics of Connected-pile Foundations for Transmission Tower according to Changes of Load and Connection Beam Conditions in Clay (점토지반에서 하중특성 및 연결보조건에 따른 송전철탑용 연결형 말뚝기초의 특성 분석)

  • Kyung, Doohyun;Lee, Junhwan;Paik, Kyuho;Kim, Youngjun;Kim, Daehong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.5-18
    • /
    • 2013
  • The differential settlement between the foundations causes the critical damage on the transmission tower constructed in soft ground. Connected-pile foundation for transmission tower structures is an option to prevent the differential settlement. It consists of main foundations and connection beams that are placed between the individual foundations at each corner of tower. In this study, 24 model pile load tests were conducted at a construction site in jeonlabuk-do to investigate the effects of the connection beams on transmission tower foundation. In model tests, various load conditions and connection beam conditions were considered. As the test results, the displacements of connected-pile foundation differed in accordance with load directions. The settlements of connected-pile foundation decreased with the increased stiffness of connection beams, lateral load capacity decreased in accordance with load height, and the lateral load capacity on the failure criteria was similar regardless of load direction.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations

  • Ghiasi, Vahed;Moradi, Mobin
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • Application the pile group foundation to reduce overall settlement of the foundation and also avoid a very fruitful settlement of foundations, inconsistent was carried out. In such a case, in event that the Foundation, not as a mere pile group, which as a system consisting of a broad foundation with pile Group, economic design criteria will be provided in spite of high safety. A new approach in the design of the Foundation can be introduced as the piles are just a tool to improve the parameters of soil hardness; that it can work with detachable piles from raft. Centralized arrangement of piles as the most optimal layout of piles in reducing inconsistent settlement, which is the lowest value of resulting layout in this differential settlement. Using the combination of piles connected and disconnected to form the raft, bending moment created in the raft is reduced. It also concentrated arrangements have greatest effect in reducing amount of moment applied to the raft.

Structural Performance Evaluation of Bolt Connection for Half-sphere Joint between PHC Pile and Steel Column (강재기둥-PHC 파일 간 반구형 접합부(HAT Joint)의 볼트 연결에 대한 구조성능평가)

  • Oh, Jintak;Kim, Sang-Bong;Kim, Young-Sik;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2015
  • To overcome the weakness of spread foundation in large space structure, the research of precast pile for replace spread foundation have been conducted. The new type of joint between PHC pile and steel column is named HAT Joint(Hollow hAlf-sphere cast-sTeel Joint). It connected PHC Pile by bolt that verification of bolt connection should be accomplished. In this paper, pull-out test and flexural performance for HAT Joint to verifying the bolt connection is explained. As a result, the pull-out and flexural capacities of bolt were checked to use in real structure. Furthermore, the equation of pull-out strength was proposed.

Dynamic Behaviour of Pile Foundation with Scour (세굴을 고려한 말뚝기초의 동적 거동분석)

  • 김정환;허택영;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.55-62
    • /
    • 2003
  • This study considered the effect of scour depth on the behaviour of pile foundation of bridge structure under seismic excitation. The numerical model was composed of the superstructure, pile foundation and soil. The superstructure and pile was modeled by beam elements and soil was by spring elements. The pile head and concrete footing was considered as hinge and rigid connected situation, respectively. A toro-gap element was used to model the expansion joint of superstructure. Nonlinear dynamic analysis was carried out on the constructed model. It was acknowledged that the steel pile become to yield after the scour depth reached about 2.0m.

  • PDF

The analysis of lateral behavior of connected foundation for transmission tower in clay (점토지반에 근입된 모형송전철탑 연결형 기초의 수평거동분석)

  • Kyung, Doo-Hyun;Song, Won-June;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.629-637
    • /
    • 2010
  • In this study, we analyzed lateral behavior of connected foundation for transmission tower in clay. For this study, we performed model lateral load test, measured load-displacement curve of connected foundation. For the tests, we manufactured connected foundation model that consider a change of rigidity, installed various measuring sensors for understanding of elements and general foundation behavior. From the test results, we measured load capacities using various methods, compared and analyzed these capacities.

  • PDF

Dynamic Centrifuge Tests for Evaluating the Earthquake Load of the Structure on Various Foundation Types (다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험)

  • Ha, Jeong Gon;Jo, Seong Bae;Park, Heon Joon;Kim, Dong Kwan;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.285-293
    • /
    • 2016
  • Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.