• Title/Summary/Keyword: Connected and Automated Driving

Search Result 20, Processing Time 0.022 seconds

Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI (IPA 및 FGI 분석을 통한 자율주행차량 핸디캡과 발생원인 분석)

  • Jeon, Hyeonmyeong;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.34-46
    • /
    • 2021
  • In order to accelerate the commercialization of self-driving cars, it is necessary to accurately identify the causes of deteriorating the driving safety of the current self-driving cars and try to improve them. This study conducted a questionnaire survey of experts studying autonomous driving in Korea to identify the causes of problems in the driving safety of autonomous vehicles and the level of autonomous driving technology in Korea. As a result of the survey, the construction section, heavy rain/heavy snow conditions, fine dust conditions, and the presence of potholes were less satisfied with the current technology level than their importance, and thus priority research and development was required. Among them, the failure of road/road facilities and the performance of the sensor itself in the construction section and the porthole, and the performance of the sensor and the absence of an algorithm were the most responsible for the situation connected to the weather. In order to realize safe autonomous driving as soon as possible, it is necessary to continuously identify and resolve the causes that hinder the driving safety of autonomous vehicles.

Development of a Model for Dynamic Station Assignmentto Optimize Demand Responsive Transit Operation (수요대응형 모빌리티 최적 운영을 위한 동적정류장 배정 모형 개발)

  • Kim, Jinju;Bang, Soohyuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • This paper develops a model for dynamic station assignment to optimize the Demand Responsive Transit (DRT) operation. In the process of optimization, we use the bus travel time as a variable for DRT management. In addition, walking time, waiting time, and delay due to detour to take other passengers (detour time) are added as optimization variables and entered for each DRT passenger. Based on a network around Anaheim, California, reserved origins and destinations of passengers are assigned to each demand responsive bus, using K-means clustering. We create a model for selecting the dynamic station and bus route and use Non-dominated Sorting Genetic Algorithm-III to analyze seven scenarios composed combination of the variables. The result of the study concluded that if the DRT operation is optimized for the DRT management, then the bus travel time and waiting time should be considered in the optimization. Moreover, it was concluded that the bus travel time, walking time, and detour time are required for the passenger.

Impact Analysis of Connected-Automated Driving Services on Urban Roads Using Micro-simulation (미시교통시뮬레이션 기반 도심도로 자율협력주행 서비스 효과 분석)

  • Lee, Ji-yeon;Son, Seung-neo;Park, Ji-hyeok;So, Jaehyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The operational design domain (ODD) of autonomous vehicles needs to be expanded on highways and urban roads in light of the substantial commercialization of Level 3 autonomous vehicles. Therefore, this study developed a specific infrastructure autonomous vehicle-based cooperative driving service to ensure the driving safety of autonomous vehicles on city roads. The traffic operation efficiency, safety evaluation, and core evaluation indices for each service were selected and analyzed to study the effect of each service. The result of the analysis confirmed that the traffic operation efficiency and safety of autonomous vehicles were improved through the V2X communication-based autonomous cooperative driving service. On the whole, the significance of this study is in deriving the effect of the autonomous cooperative driving service based on V2X communication on urban roads with interrupting traffic flow.

A Study to Evaluate the Impact of In-Vehicle Warning Information on Driving Behavior Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 차량 내 경고정보의 운전자 주행행태 영향 분석)

  • Kim, Tagyoung;Kim, Ho Seon;Kang, Kyeong-Pyo;Kim, Seoung Bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.28-41
    • /
    • 2022
  • A road system with CV(Connected Vehicle)s, which is often referred to as a cooperative intelligent transportation system (C-ITS), provides various road information to drivers using an in-vehicle warning system. Road environments with CVs induce drivers to reduce their speed or change lanes to avoid potential risks downstream. Such avoidance maneuvers can be considered to improve driving behaviors from a traffic safety point of view. Thus, empirically evaluating how a given in-vehicle warning information affects driving behaviors, and monitoring of the correlation between them are essential tasks for traffic operators. To quantitatively evaluate the effect of in-vehicle warning information, this study develops a method to calculate compliance rate of drivers where two groups of speed profile before and after road information is provided are compared. In addition, conventional indexes (e.g., jerk and acceleration noise) to measure comfort of passengers are examined. Empirical tests are conducted by using PVD (Probe Vehicle Data) and DTG (Digital Tacho Graph) data to verify the individual effects of warning information based on C-ITS constructed in Seoul metropolitan area in South Korea. The results in this study shows that drivers tend to decelerate their speed as a response to the in-vehicle warning information. Meanwhile, the in-vehicle warning information helps drivers to improve the safety and comport of passengers.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

Study on Improvement of Connected Vehicles Interface Board and Transition Algorithm of Digital Traffic Signal Controller for Autonomous Vehicles and C-ITS (자율주행차 및 C-ITS 지원을 위한 디지털 교통신호 제어기의 신호정보연계장치 및 전이 알고리즘 개선 연구)

  • Ko, Sejin;Choi, Eunjin;Gho, Gwang-Yong;Han, Eum;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.15-29
    • /
    • 2021
  • The signal intersection is the most challenging space for autonomous vehicles. To promote the safe driving of autonomous vehicles on urban roads with traffic signals, autonomous vehicles need to receive traffic signal information from infrastructure through V2I communication. Thus, a protocol for providing traffic signal information was added to the standard traffic signal controller specification of the National Police Agency. On the other hand, there are technical limitations when applying this to digital traffic signal controllers because the protocols are defined mainly for analog traffic signal controllers. Therefore, this study proposes developing a signal information linkage module to provide traffic signal information from a digital traffic signal controller to an autonomous vehicle and an algorithm improvement method that can provide accurate traffic signal information at the time of traffic signal transition.

Networked Intelligent Motor-Control Systems Using LonWorks Fieldbus

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.365-370
    • /
    • 2004
  • The integration of intelligent devices, devices-level networks, and software into motor control systems can deliver improved diagnostics, fast warnings for increased system reliability, design flexibility, and simplified wiring. Remote access to motor-control information also affords an opportunity for reduced exposure to hazardous voltage and improved personnel safety during startup and trouble-shooting. This paper presents LonWorks fieldbus networked intelligent induction control system architecture. Experimental bed system with two inverter motor driving system for controlling 1.5kW induction motor is configured for LonWorks networked intelligent motor control. In recent years, MCCs have evolved to include component technologies, such as variable-speed drives, solid-state starters, and electronic overload relays. Integration was accomplished through hardwiring to a programmable logic controller (PLC) or distributed control system (DCS). Devicelevel communication networks brought new possibilities for advanced monitoring, control and diagnostics. This LonWorks network offered the opportunity for greatly simplified wiring, eliminating the bundles of control interwiring and corresponding complex interwiring diagrams. An intelligent MCC connected in device level control network proves users with significant new information for preventing or minimizing downtime. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events, and electronic documentation. In order to show the application of the multi-motors control system, the prototype control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using LonWorks network.

  • PDF

Comparison of RSS Safety Distance for Safe Vehicle Following of Autonomous Vehicles (자율주행자동차의 안전한 차량 추종을 위한 RSS 모형의 안전거리 비교)

  • Park, Sungho;Park, Sangmin;Hong, YunSeog;Ryu, Seungkyu;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.84-95
    • /
    • 2018
  • A mathematical model of responsibility-sensitive safety (RSS) has been proposed as a way to determine whether an autonomous driving accident has occurred. Autonomous vehicles related industry and academia have shown great interest in this model. However, this mathematical model lacks a comprehensive review on whether the model can be used to clarify responsibilities of autonomous vehicles in the event of a traffic accident. In this study, we analyzed the issues that need to be solved in order to apply the RSS model. In conclusion, there is a limit in the equation and the social acceptability of the RSS model. To use the RSS model practically, it is necessary to define the response time of the autonomous vehicle and to measure and control the reaction time value according to the appropriate technology level for each autonomous vehicle.

Development of Predictive Pedestrian Collision Warning Service Considering Pedestrian Characteristics (보행자 특성을 고려한 예측형 보행자 충돌 경고 서비스 개발)

  • Ka, Dongho;Lee, Donghoun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.68-83
    • /
    • 2019
  • The number of pedestrian traffic accident fatalities is three times the number of car accidents in South Korea. Serious accidents are caused especially at intersections when the vehicle turns to their right. Various pedestrian collision warning services have been developed, but they are insufficient to prevent dangerous pedestrians. In this study, P2CWS is developed to warn approaching vehicles based on the pedestrians' characteristics. In order to evaluate the performance of the service, actual pedestrian data were collected at the intersection of Daejeon, and comparative analysis was carried out according to pedestrian characteristics. As a result, the performance analysis showed a higher accordance when the characteristics of the pedestrian is considered. Accordingly, we can conclude that identifying pedestrian characteristics in predicting the pedestrian crossing is important.

A Study on the Compression and Major Pattern Extraction Method of Origin-Destination Data with Principal Component Analysis (주성분분석을 이용한 기종점 데이터의 압축 및 주요 패턴 도출에 관한 연구)

  • Kim, Jeongyun;Tak, Sehyun;Yoon, Jinwon;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.81-99
    • /
    • 2020
  • Origin-destination data have been collected and utilized for demand analysis and service design in various fields such as public transportation and traffic operation. As the utilization of big data becomes important, there are increasing needs to store raw origin-destination data for big data analysis. However, it is not practical to store and analyze the raw data for a long period of time since the size of the data increases by the power of the number of the collection points. To overcome this storage limitation and long-period pattern analysis, this study proposes a methodology for compression and origin-destination data analysis with the compressed data. The proposed methodology is applied to public transit data of Sejong and Seoul. We first measure the reconstruction error and the data size for each truncated matrix. Then, to determine a range of principal components for removing random data, we measure the level of the regularity based on covariance coefficients of the demand data reconstructed with each range of principal components. Based on the distribution of the covariance coefficients, we found the range of principal components that covers the regular demand. The ranges are determined as 1~60 and 1~80 for Sejong and Seoul respectively.