• 제목/요약/키워드: Conjugated linolenic acid

검색결과 34건 처리시간 0.022초

Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

  • Fiorentini, Giovani;Lage, Josiane F.;Carvalho, Isabela P.C.;Messana, Juliana D.;Canesin, Roberta. C.;Reis, Ricardo A.;Berchielli, Telma T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.976-986
    • /
    • 2015
  • The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of $419{\pm}11kg$ (at $15{\pm}2mo$) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index.

pH Affects the In vitro Formation of cis-9, trans-11 CLA and trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권12호
    • /
    • pp.1743-1748
    • /
    • 2003
  • The effect of pH on the fermentation characteristics and the formation of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-11 octadecenoic acid by mixed ruminal bacteria was examined in vitro when incubated with linseed or rapeseed. Concentrate (1%, w/v) with ground linseed (0.6%, w/v) or rapeseed (0.5%, w/v) was added to 600 ml mixed solution of strained rumen fluid with artificial saliva (1:1, v/v), and was incubated anaerobically for 12 h at $39^{\circ}C$. The pH of culture solution was maintained at level close to 4.5, 5.3, 6.1 and 6.9 with 30% $H_2SO_4$ or 30% NaOH solution. pH increment resulted in increases of ammonia and total volatile fatty acid (VFA) concentration in culture solutions containing both oilseeds. Fermentation did not proceeded at pH 4.5. Molar proportion of acetate decreased but that of propionate increased as pH increased when incubated with oilseeds. While the hydrogenating process was very slow at the pH range of 4.5 to 5.3, rapid hydrogenation was found from the culture solutions of pH 6.1 and 6.9 when incubated with linseed or rapeseed. As pH in culture solution of linseed or rapeseed increases proportions of oleic acid (cis-9 $C_{18:1}$) and trans-11 octadecenoic acid increased but those of linoleic acid and linolenic acid decreased. The CLA proportion increased with pH in culture solution containing rapeseed but CLA was mostly not detected from the incubation of linseed.

ω-6 and ω-3 Polyunsaturated Fatty Acids: Inflammation, Obesity and Foods of Animal Resources

  • Hwa Yeong Jeong;Yang Soo Moon;Kwang Keun Cho
    • 한국축산식품학회지
    • /
    • 제44권5호
    • /
    • pp.988-1010
    • /
    • 2024
  • Obesity, as defined by the World Health Organization (WHO), is excessive fat accumulation that can pose health risks and is a disorder of the energy homeostasis system. In typical westernized diets, ω-6 polyunsaturated fatty acids (PUFAs) vastly exceed the amount of ω-3 PUFAs, with ω-6/ω-3 ratios ranging from 10:1 to 25:1. ω-6 PUFAs, such as arachidonic acid, have pro-inflammatory effects and increase obesity. On the other hand, ω-3 PUFAs, including eicosapentaenoic acid and docosahexaenoic acid, have anti-inflammatory and anti-obesity effects. Linoleic acid (LA) and alpha-linolenic acid (ALA) are synthesized in almost all higher plants, algae, and some fungi. However, in humans and animals, they are essential fatty acids and must be consumed through diet or supplementation. Therefore, balancing LA/ALA ratios is essential for obesity prevention and human health. Monogastric animals such as pigs and chickens can produce meat and eggs fortified with ω-3 PUFAs by controlling dietary fatty acid (FA). Additionally, ruminant animals such as feeder cattle and lactating dairy cows can opt for feed supplementation with ω-3 PUFAs sources and rumen-protected microencapsulated FAs or pasture finishing. This method can produce ω-3 PUFAs and conjugated linoleic acid (CLA) fortified meat, milk, and cheese. A high ω-6/ω-3 ratio is associated with proinflammation and obesity, whereas a balanced ratio reduces inflammation and obesity. Additionally, probiotics containing lactic acid bacteria are necessary, which reduces inflammation and obesity by converting ω-6 PUFAs into functional metabolites such as 10-hydroxy-cis-12-octadecenoic acid and CLA.

Fatty Acid Profiles of Various Muscles and Adipose Tissues from Fattening Horses in Comparison with Beef Cattle and Pigs

  • He, M.L.;Ishikawa, S.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1655-1661
    • /
    • 2005
  • The present studies were designed to provide new information on fatty acid profiles of various muscles and adipose tissues of fattening horses in comparison with beef cattle and pigs. In the first study, the lipids were extracted respectively from subcutaneous, intermuscular adipose tissues, longissimus dorsi and biceps femoris muscles of fattening Breton horses (n = 8) with an average body weight of 1,124 kg. In the second study, the lipids were extracted from subcutaneous, intermuscular adipose tissues and longissimus dorsi muscle of fattening horses (n = 13), Japanese Black beef cattle (n = 5), Holstein steers (n = 5) and fattening pigs (n = 5). The fatty acids in the lipid samples were determined by gas chromatography after methylation by a combined base/acid methylation method. It was found that the lipids from horse subcutaneous and intermuscular adipose tissues contained more (p<0.05) polyunsaturated fatty acids (PUFA) which were mainly composed of linoleic acid (C18:2) and linolenic acid (C18:3) than those in the muscles. The weight percent of conjugated linoleic acids (CLA cis 9, trans 11) in lipids from biceps femoris muscle was 0.22%, which was higher (p<0.05) than that from the other depots. The horse lipids were higher (p<0.05) in PUFA but lower (p<0.05) in SFA and MUFA in comparison with those of the cattle and pigs. The percentage of C18:2 or C18:3 fatty acid in the horse lipids were respectively 2-8 fold or 5-18 fold higher (p<0.05) than those of the cattle and pigs. The percentages of CLA (cis 9, trans 11) in the horse lipids (0.14-0.16%) were very close to those of the pigs (0.18-0.19%) but much lower (p<0.05) than those of the Japanese Black beef cattle (0.55-0.94%) and Holstein steers (0.46-0.71%). The results indicated that the fatty acid profiles of lipids from different muscle and adipose tissues of fattening horses differed significantly. In comparison with that of the beef cattle and pigs, the horse lipids contained more C18:2 and C18:3 but less CLA.

Addition Effect of Seed-associated or Free Linseed Oil on the Formation of cis-9, trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권8호
    • /
    • pp.1115-1120
    • /
    • 2002
  • The effects of seed-associated or free linseed oil on fermentation characteristics and long-chain unsaturated fatty acids composition, especially the formation of conjugated linoleic acid (CLA) and octadecenoic acid (trans-11 $C_{18:1}$, $t-C_{18:1}$) by mixed ruminal bacteria were examined in vitro. Concentrate (1% of culture solution, w/v, as-fed basis) with ground linseed (0.6% of culture solution, w/v, DM basis) or linseed oil as absorbed onto ground alfalfa hay was added to 600 ml mixed solution consisting of strained rumen fluid and artificial saliva at the ratio of 1:1 in a glass culture jar. The culture jar was covered with a glass lid with stirrer, and placed into a water-bath ($39^{\circ}C$) and incubated anaerobically up to 24 h. Seed-associated or free linseed oil did not significantly affect the pH and ammonia concentration in the culture solution. Molar percent of acetate tended to increase while that of propionate decreased with the addition of free oil treatment throughout the incubation. Differences in bacterial number were relatively small, regardless of the form of supplements. Decreasing trends in the compositions of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) but increasing trends of stearic acid ($C_{18:0}$), $t-C_{18:1}$ and CLA compositions were found from culture contents up to 12h incubation when incubated with both ground linseed and linseed oil. The compositions of $C_{18:0}$, $C_{18:2}$ and $C_{18:3}$ were greater but those of oleic acid ($C_{18:1}$), $t-C_{18:1}$ and CLA were smaller in a culture solution containing ground linseed than those containing linseed oil. The ratio of $t-C_{18:1}$ to CLA was lower in the culture solutions containing linseed oil up to 12h incubations as compared to those containing ground linseed.

질소시비 수준 및 재생기간이 톨페스큐와 버뮤다그라스의 지방산조성에 미치는 영향 (Effect of Nitrogen Application Level and Regrowth Period on Composition of Fatty Acid in Tall fescue and Bermudagrass)

  • 박형수;황경준;박남건;김영준;정하연;조남철;고문석
    • 한국초지조사료학회지
    • /
    • 제29권1호
    • /
    • pp.43-50
    • /
    • 2009
  • 본 시험은 질소시비 수준과 재생기간이 툴페스큐와 버뮤다그라스의 지방산 조성과 버뮤다 그라스의 사초생산성에 미치는 영향을 평가하기 위하여 국립축산과학원 제주출장소 시험포장에서 2006년 6월부터 2007년 12월까지 수행되었다. 톨페스큐의 식물체내 지방산 조성은 팔미틱산(C16:0), 리놀산(C18:2)과 리놀렌산(C18:3)이 총지방산의 87(N-0), 88(N-50), 88(N-100)%를 차지하였으며 질소시비수준에 따라 뚜렷한 차이가 나타나지 않았다. 재생기간이 길어질수록 리놀렌산(C18:3)은 감소하는 경향을 보였으며 리놀산(C18:2)은 다른 지방산과 달리 증가하는 것으로 나타났다. 버뮤다그라스의 질소 시비수준에 따른 지방산 조성은 팔미틱산(C16:0)이 톨페스큐보다 높게 나타났으며 리놀산(C18:2)과 리놀렌산(C18:3)은 톨페스큐보다 낮은 것으로 나타났다. 재생기간이 길어짐에 따라 리놀산(C18:2)과 리놀렌산(C18:3)은 톨페스큐와 달리 감소하는 것으로 나타났다. 버뮤다그라스는 질소시비수준이 높고 재생기간이 증가할수록 건물수량이 증가하는 것으로 나타났으며, 질소시비수준이 높을수록 조단백질함량은 증가하였으며 재생기간이 길어질수록 사료가치는 감소하였다. 이상의 결과를 종합해보면 질소 시비수준에 따른 톨페스큐와 버뮤다그라스의 지방산 함량은 뚜렷한 차이를 보이지 않았으나 수확 후 재생기간에 따른 변화는 뚜렷하게 나타남으로서 초지를 활용한 CLA 증진축산물을 생산시 가급적 수확 후 재생기간이 짧은 어린 목초를 이용할 수 있는 초종별 적정 예취시기와 방목전략을 세워야 할 것으로 생각된다. 또한 향후 각 초종별 계절 및 생육단계가 목초 내 지방산 함량에 미치는 영향에 대한 연구가 이루어져야 할 것으로 생각된다.

Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats

  • Morsy, T.A.;Kholif, S.M.;Kholif, A.E.;Matloup, O.H.;Salem, A.Z.M.;Elella, A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1116-1122
    • /
    • 2015
  • This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.

닭튀김 횟수에 따른 튀김닭 및 튀김유의 품질 특성의 변화 (Changes in Quality Properties of Deep Frying Oil and Fried Chickens according to Frying Number)

  • 손종연;강근옥
    • 동아시아식생활학회지
    • /
    • 제22권4호
    • /
    • pp.527-534
    • /
    • 2012
  • 본 연구에서는 닭튀김을 일정기간 반복 재사용했을 때, 닭튀김 횟수에 따른 튀김유 및 튀김닭의 품질 저하 정도를 비교, 검토하였다. 닭 110마리 튀긴 후의 튀김유 및 튀김닭의 산가는 각각 2.27 및 1.90이었으며, 공액 이중 산가는 각각 0.70 및 0.44였다. 과산화물가는 튀김 횟수에 따른 일률적인 증가를 보이지 않았다. 닭 110마리 튀긴 후 튀김유의 지방산조성을 보면, 리놀레산과 리놀렌산의 함량은 감소하고, 팔미트산과 스테아르산, 올레산의 함량은 상대적으로 증가하였다. 110마리 튀긴 후의 튀김유와 튀김닭의 트랜스지방산의 함량은 각각 0.75 및 0.45%이었으며, 벤조피렌의 함량은 각각 2.20 및 2.19 ${\mu}g/kg$으로 거의 차이가 없었다. 전체적으로 튀김유와 튀김닭의 품질은 닭 60마리 튀긴 후 현저하게 감소되었다.

들깨 및 들기름의 자외선 조사 중 지방질 산화와 산화방지제의 변화 (Oxidative Stability and Antioxidant Changes in Perilla Seeds and Perilla Oil Affected by UV Irradiation)

  • 왕선영;최은옥
    • 한국식품과학회지
    • /
    • 제44권1호
    • /
    • pp.8-13
    • /
    • 2012
  • 자외선 조사는 들깨와 들기름에서 지방질 산화를 유발하였으며 들기름에 비해 들깨의 산화안정성이, 볶은 들깨에 비해 생 들깨의 유지 산화안정성이 우수하였다. 자외선 조사 중 들깨와 들기름에 존재하는 토코페롤과 폴리페놀 화합물은 분해되었으며 분해 속도는 들기름보다 들깨에서, 볶은 들깨보다 생 들깨에서 높았다. 또한 자외선 조사 중 들깨에 비해 들기름이 산화방지제 농도에 더욱 민감하게 영향을 받았으며, 토코페롤에 비해 폴리페놀 화합물이 들깨 및 들기름의 산화방지에 높은 기여도를 보였다.

Variation of Chemical Components and Their Interaction with Isoflavones in Maturing Soybean Seeds

  • Kim Sun-Lim;Lee Young-Ho;Yun Hong-Tae;Moon Jung-Kyung;Park Keum-Yong;Chung Jong-Il
    • 한국작물학회지
    • /
    • 제50권4호
    • /
    • pp.291-300
    • /
    • 2005
  • This study was focuses on the variation of isoflavone contents during seed development and their interaction with major chemical components such as protein, amino acids, saccaharides, lipid and fatty acids. During maturing, lipid, protein, and amino acid contents in soybean seeds showed the highest values at R7 stages, but isoflavone contents were increased until R8 stage. It was noted that malonyl glucosides $(64.2\%)$ are predominant forms among conjugated isoflavones followed by glucosides $(30.7\%)$, acetyl glucosides $(4.1\%)$ and aglycones $(0.9\%)$. Sucrose and stachyose were presented as a major saccharide in soybean seeds. As maturing days progressed, they were constantly increased and the highest contents were observed at R8 stage. While small quantities of raffinose, fructose, glucose, maltose, DP3 (DP: degree of polymerization), DP6, and DP7 were detected. These results showed that saccharide composition at the beginning of seed development is primarily monosaccharides with little sucrose and oligosaccharides, but as maturing days proceeds, sucrose and starch increase with concomitant decrease in monosaccharides. Sucrose and stachyose were positively correlated with isoflavone (r=0.780, 0.764 at p<0.01, respectively), while fructose, glucose, maltose, and DP7 were negatively correlated (r=-0.651, -0.653, -0.602, and -0.586 at p<0.05, respectively). Soybeans at R8 stage were high in protein and amino acid, but low in free amino acid contents. Protein and amino acid contents showed positively significant correlations with isoflavone (r=0.571 and 0.599 at p<0.05, respectively), but free amino acid content were negatively correlation with isoflavone (r=-0.673, p<0.01). The lipid content reaches its final content relatively early stage of seed development and remains constant as compared with other chemical components. Among the fatty acids, although varietal difference was presented, stearic acid and linolenic acid were gradually decreased, while oleic and linoleic acid were increased as seed maturing progressed. Lipid was significantly correlated (r=0.754, p<0.01) with isoflavones. However, neither saturated fatty acid nor unsaturated fatty acids significantly affected the isoflavone contents of maturing soybean seeds.