• Title/Summary/Keyword: Conjugated linoleic acids

Search Result 118, Processing Time 0.029 seconds

Comparison of Diglyceride, Conjugated Linoleic Acid, and Diglyceride-Conjugated Linoleic Acid on Proliferation and Differentiation of 3T3-L1 Preadipocytes

  • Jeong, Jae-Hwang;Lee, Sang-Hwa;Hue, Jin-Joo;Lee, Yea-Eun;Lee, Young-Ho;Hong, Soon-Ki;Jeong, Seong-Woon;Nam, Sang-Yoon;Yun, Young-Won;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.145-150
    • /
    • 2007
  • Conjugated linoleic acid (CLA) reduces fat deposition in several mammalian species. The proposed mechanisms for this effect are reduced preadipocyte proliferation and differentiation. The objective of this study was to investigate the inhibitory effects of diglyceride (DG), CLA, DG-CLA of proliferation and differentiation of 3T3-L1 preadipocytes. Cell viability was determined using WST-8 analysis and cell differentiation was determined by glycerol-3-phosphate dehydrogenase (GPDH) activity. Lipid accumulation in differentiating 3T3-L1 cells was measured by Oil red O staining. The proliferation of preconfluent 3T3-L1 cells by treatments of DG, CLA, and DG-CLA was reduced in a dose-dependent manner. CLA among them was the most effective in reduction of viable cells with increasing concentrations. Treatments of the DG, CLA, and DG-CLA at the concentration of $100{\cdot}\ddot{I}g/ml$ for 48h significantly inhibited differentiation of 3T3-L1 cells (p<0.05). In addition. cytoplasmic lipid accumulation during differentiation of the 3T3-L1 preadipocytes was also inhibited by treatments of the test solutions. DG-CLA was the most effective in the inhibition of differentiation and lipid accumulation in 3T3-L1 cells. These results indicate that the DG including CLA as fatty acids is more effective for anti-obesity than DG or CLA alone and that consumption of DG-CLA as a dietary oil may give a benefit for controlling overweight in humans.

Induction of Apoptotic Cell Death and Depression of Bcl-2 Protein Levels by Trans-10,cis-12 Conjugated Linoleic Acid in Human Prostate Cancer (인간 전립선 암세포인 TSU-Pr1에서 trans-10,cis-12 Conjugated Linoleic Acid에 의한 Apoptosis 유발과 Bcl-2 단백질의 발현억제)

  • 오윤신;김은지;이상곤;정차권;강일준;신현경;윤정한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1126-1133
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for a class of positional and geometric conjugated dienoic isomers of linoleic acid (LA) and has anti-cancer activity in experimental animals. We have previously observed that an isomeric mixture of CLA and trans-10,cis-12 (t10c12) inhibited cell growth in a dose-dependent manner whereas LA and cis-9,trans-11 (c9t11) had no effect. The present study examined whether the CLA mixture and t10c12 induce apoptotic cell death. TSU-Prl cells were incubated for three days in serum-free medium in the absence or presence of individual fatty acids, and the DNA fragmentation assay was performed. Cells treated with the CLA mixture or t10c12 produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. By contrast, LA and c9t11 had no effect. Western immunoblot analysis of total lysates revealed that t10c12 reduced anti-apoptotic, 26 kDa, Bcl-2 protein levels by 49$\pm$8% compared with controls, whereas this CLA isomer did not alter pro-apoptotic,21 kDa, Bax protein levels. These results suggest that growth inhibitory effect of the t10c12 CLA isomer may, at least in part, be attributed to Increased apoptotic death in TSU-Prl cells.

Enzymatic Synthesis of Diacylglycerol Oil from Glyceryl Mono-oleate and Conjugated Linoleic Acid Using a Stirred-Batch Type Reactor (회분식 반응기를 이용한 Glyceryl Monooleate와 Conjugated Linoleic Acid로부터 효소적 반응을 통한 디글리세롤 유지의 합성)

  • Jeon, Mi-Sun;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.246-252
    • /
    • 2009
  • Diacylglycerol(DAG) was produced by enzymatic esterification of glyceryl mono-oleate(GMO) and conjugated linoleic acid(CLA) in a stirred-batch type reactor. The reaction was catalyzed by lipozyme RMIM(an immobilized lipase from Rizomucor miehei). DAG was isolated by a short-path distillation process and decolorized. DAG oil was composed of 87.3% DAG, 11.4% triacylglycerol(TAG), and 1.5% monoacylglycerol(MAG)(all w/w). Major fatty acids in DAG oil were oleic acid(54%), CLA(31.1%), and linoleic acid(7%). DAG oil iodine,and acid values were 108.8, 2.57, and 1, respectively. The DAG oil solid fat index(SFI) and thermograms were obtained using differential scanning calorimetry.

Distribution and Content of Geometric Isomers of Conjugated Linoleic Acid in Dairy Foods from the Quebec Province of Canada

  • Park, Seung-Yong;Ahn, Jae-Eun;Kim, Geun-Bae;Jung, Mun-Yhung;Lee, Byong-H.
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The distributions and content of geometrical isomers of conjugated linoleic acids (CLA) in dairy foods such as milk, yogurt, and cheese, produced or being sold in the Quebec province of Canada, were investigated by gas chromatographic analysis. The mean contents of total CLA (mg/g fat) were $5.06{\pm}0.74$ in 4 low-fat milk samples, $14.14{\pm}4.95$ in 6 yogurt samples, and $18.22{\pm}7.89$ in 5 natural ripened cheeses. Among the yogurt samples, YY contained the highest content of total CLA ($20.68{\pm}5.17\;mg/g$ fat). Among the cheese samples, Gruyere contained the highest amount of total CLA ($29.86{\pm}0.62$) as well as c-9,t-11 ($22.03{\pm}0.36\;mg/g$ fat), followed by Jarlsberg ($22.76{\pm}0.14$), Provolone ($16.42{\pm}0.52$), Cheddar ($13.83{\pm}0.81$), and Swiss ($8.23{\pm}1.11$). Based on the distribution ratios of CLA isomers in these dairy foods, the c-9,t-11 isomer appeared to be the major CLA isomer in both the low-fat milk ($89.87{\pm}2.39%$) and yogurt ($90.98{\pm}4.42%$). In the cheeses, however, the ratio of c-9,t-11 ($54.86{\pm}13.06%$) was slightly higher than that of c-10,c-12 ($40.81{\pm}13.40%$).

t10,c12 Conjugated Linoleic Acid Upregulates Hepatic De Novo Lipogenesis and Triglyceride Synthesis via mTOR Pathway Activation

  • Go, Gwang-Woong;Oh, Sangnam;Park, Miri;Gang, Gyoungok;McLean, Danielle;Yang, Han-Sul;Song, Min-Ho;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1569-1576
    • /
    • 2013
  • In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However, the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid accumulation. It was found that treatment with t10,c12 CLA ($100{\mu}M$) for 72 h increased neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2-deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with consequent lipid accumulation in HepG2 cells.

Excessive Dietary Conjugated Linoleic Acid Affects Hepatic Lipid Content and Muscular Fatty Acid Composition in Young Chicks

  • An, B.K.;Shinn, K.H.;Kobayashi, Y.;Tanaka, K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1171-1176
    • /
    • 2003
  • The effects of dietary conjugated linoleic acid (CLA) on lipid concentrations and fatty acid composition of various tissues were studied in young chicks. From 7 days of age, a total of 160 chicks were divided into 4 groups, placed into 4 pens per group (10 birds per pen) and fed one of four experimental diets containing 6% tallow (TO 6%), 4% tallow plus 2% CLA (TO 4%-CLA 2%), 2% tallow plus 4% CLA (TO 2%-CLA 4%) or 6% CLA (CLA 6%) for 3 weeks. There were no significant differences in growth performances and the relative weights of various organs, but relative liver weight of chicks fed dietary CLA at 4 and 6% levels was significantly higher (p<0.05) than that of TO 6% group. The chemical compositions of leg muscle were not affected by CLA feeding. However, hepatic total lipid of chicks fed 6% CLA diet was significantly higher (p<0.05) than those of TO 6% and TO 4%-CLA 2% groups. The concentrations of various lipid fractions in serum were not affected by CLA feeding. With the increase in dietary CLA levels, cis 9-trans 11 CLA, trans 10-cis 12 CLA and total CLA of leg muscle increased linearly. The relative proportions of C18:1 $\omega$ -9 and C20:4 $\omega$-6 fatty acids in the leg muscles of chicks fed the CLA containing diets were significantly lower (p<0.05) than those of TO 6% group. These results indicate that the levels of CLA isomers were increased linearly in dose-dependent manner after feeding of synthetic CLA source. But it was also observed that excessive amount of dietary CLA resulted in the possible adversely effects, such as increase of liver weight, hepatic lipid accumulation and serum GOT level.

Effect of ruminal administration of soy sauce oil on rumen fermentation, milk production and blood parameters in dairy cows

  • Konno, Daiji;Takahashi, Masanobu;Osaka, Ikuo;Orihashi, Takenori;Sakai, Kiyotaka;Sera, Kenji;Obara, Yoshiaki;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1779-1786
    • /
    • 2020
  • Objective: To evaluate soy sauce oil (a by-product of making whole soybean soy sauce) as a new dietary lipid source, a large amount of soy sauce oil was administered into the rumen of dairy cows. Methods: Four Holstein dairy cows fitted with rumen cannulae were used in a 56-day experiment. Ruminal administration of soy sauce oil (1 kg/d) was carried out for 42 days from day 8 to day 49 to monitor nutritional, physiological and production responses. Results: Dry matter intake and milk yield were not affected by soy sauce oil administration, whereas 4% fat-corrected milk yield and the percentage of milk fat decreased. Although ruminal concentration of total volatile fatty acids (VFA) and the proportion of individual VFA were partially affected by administration of soy sauce oil, values were within normal ranges, showing no apparent inhibition in rumen fermentation. Administration of soy sauce oil decreased the proportions of milk fatty acids with a carbon chain length of less than 18, and increased the proportions of stearic, oleic, vaccenic and conjugated linoleic acids. Conjugated linoleic acid content in milk became 5.9 to 8.8 times higher with soy sauce oil administration. Blood serum concentrations of non-esterified fatty acid, 3-hydroxybutyric acid, total cholesterol, free cholesterol, esterified cholesterol, triglyceride and phospholipid increased with administration of soy sauce oil, suggesting a higher energy status of the experimental cows. Conclusion: The results suggest that soy sauce oil could be a useful supplement to potentially improve milk functionality without adverse effects on ruminal fermentation and animal health. More detailed analysis is necessary to optimize the supplementation level of this new lipid source in feeding trials.

Effect of Conjugated Linoleic Acid Feeding on the Growth Performance and Meat Fatty Acid Profiles in Broiler: Meta-analysis

  • Cho, Sangbuem;Ryu, Chaehwa;Yang, Jinho;Mbiriri, David Tinotenda;Choi, Chang-Weon;Chae, Jung-Il;Kim, Young-Hoon;Shim, Kwan-Seob;Kim, Young Jun;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.995-1002
    • /
    • 2013
  • The effect of conjugated linoleic acid (CLA) feeding on growth performance and fatty acid profiles in thigh meat of broiler chicken was investigated using meta-analysis with a total of 9 studies. Overall effects were calculated by standardized mean differences between treatment (CLA fed) and control using Hedges's adjusted g from fixed and random effect models. Meta-regression was conducted to evaluate the effect of CLA levels. Subgroups in the same study were designated according to used levels of CLA, CP levels or substituted oils in diets. The effects on final body weight, weight gain, feed intake and feed conversion ratio were investigated as growth parameters. Total saturated and unsaturated fatty acid concentrations and C16:0, C18:0, C18:2 and C18:3 concentrations in thigh meat of broiler chicken were used as fatty acid profile parameters. The overall effect of CLA feeding on final weight was negative and it was only significant in fixed effect model (p<0.01). Significantly lower weight gain, feed intake and higher feed conversion ratio compared to control were found (p<0.05). CLA feeding on the overall increased total saturated fatty acid concentration in broilers compared to the control diet (p<0.01). Total unsaturated fatty acid concentration was significantly decreased by CLA feeding (p<0.01). As for individual fatty acid profiles, C16:0, C18:0 and C18:3 were increased and C18:2 was significantly decreased by CLA feeding (p<0.01). In conclusion, CLA was proved not to be beneficial for improving growth performance, whereas it might be supposed that CLA is effective modulating n-6/n-3 fatty acids ratio in thigh meat. However, the economical compensation of the loss from suppressed growth performance and increased saturated fatty acids with the benefit from enhanced n-6/n-3 ratio should be investigated in further studies in order to propose an appropriate use of dietary CLA in the broiler industry.

Effects of Conjugated Linoleic Acid Supplement on the Composition of Fatty Acids, Expressions of delta-5 Desaturase (D5D) and Fatty Acid Desaturase2 (FADS2) Genes in Mice (식이지방에 첨가한 Conjugated Linoleic Acid가 지방산 조성, delta-5 Desaturase(D5D)와 Fatty Acid Desaturase2(FADS2) 유전자 발현에 미치는 영향)

  • Hwang, Yun-Hee;Kang, Keum-Jee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.10
    • /
    • pp.1279-1286
    • /
    • 2007
  • We investigated the effects of conjugated linoleic acid (CLA) on the fatty acid composition in the plasma and liver, and the expressions of delta-5 desaturase (D5D) and fatty acid desaturase2 (FADS2) genes in ICR male mice using two different sources of fats in the diets. The experimental groups were divided into four groups: beef tallow (BT) and fish oil (FO), BT with CLA supplementation (BTC), and FO with CLA supplementation (FOC) groups. Ten mice in each group were fed with the experimental diets for 4 weeks. All mice were fed experimental diets containing 12% of total dietary fat (w/w) either with or without 0.5% CLA (w/w). Fatty acid compositions were analyzed in the plasma and liver using gas chromatography. The levels of D5D and FADS2 expression were analyzed by RT-PCR in the liver The results showed that CLA participates competitively with C18:2 in the elongation and desaturation processes, leading to significant increase in the levels of C20:4 and C22:6 in BTC group (p<0.05). The expression levels of D5D and FADS2 were higher in BT and BTC group than those of FO and FOC group. In particular, the expression of D5D gene was greatly upregulated in BTC group. Furthermore, the conversion ratios from C18:2 to C20:4 in the liver were higher in BTC group than those in other groups. Thus our results suggest that increased expressions of DSD and FADS2 genes may be responsible for the enhanced CLA effects on the desaturation in the BT containing saturated fatty acids rather than the FO rich in n-3 PUFA.

The Effect of Conjugated Linoleic Acid and Its Isomers on the Proliferation of Prostate TSU-Prl Cancer Cells (Conjugated Linoleic Acid (CLA)와 그 이성체가 전립선 암세포의 증식에 미치는 영향)

  • 오윤신;김은지;김종우;김우경;이현숙;윤정한
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.192-200
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of octadecadienoic acid in which the double bonds are conjugated. CLA has anticancer activity in a variety of animal cancer models, and cis-9, trans-11 (c9t11) and trans-10, cis-12(t10c12) CLA are the most predominant isomers present in the synthetic preparations utilized in these animal studies. To compare the ability of c9t11, t10c12 and an isomeric mixture of CLA to inhibit TSU-Prl cell growth, cells were incubated in a serum-free medium with various concentrations of these fatty acids. The isomeric mixture inhibited cell growth in a dose-dependent manner (1-3 $\mu$M) with a 41 $\pm$ 1% inhibition observed at 3 $\mu$M concentration after 48 hours. T10c12 also inhibited cell proliferation in a dote-dependent manner, However, the efficacy and potency of this isomer was much greater than that of the isomeric mixture with a 49 $\pm$ 2% inhibition observed at 0.3 $\mu$M concentration after 48 hours. By contrast, c9t11 slightly increased cell proliferation. To determine whether the growth-inhibiting effect of CLA is related to the changes in production of insulin-like growth factors (IGF) and IGF-binding proteins (IGFBP) by these cells, serum-free conditioned media were collected. Immunoblot analysis of conditioned media using a monoclonal anti-IGF-II antibody showed that both the isomeric mixture and t10c12 inhibited secretion of both mature 7,500 Mr and higher Mr forms of pro IGF-II, whereas c9t11 had no effect. Ligand blot analysis with 125I-IGF-II revealed the presence of two types of IGFBPs : 24,000 Mr IGFBP-4 and 30,000 Mr IGFBP-6. The production of IGFBP-4 slightly decreased at the highest concentrations of the isomeric mixture and t10c12. These results indicate that CLA inhibits human prostate cancer cell growth, an effect largely due to the action of t10c12. The growth inhibition may result, at least in part, from decreased production of IGF-II and IGFBP-4 by these cells.