• Title/Summary/Keyword: Conjugate heat transfer

Search Result 157, Processing Time 0.029 seconds

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

A Semimicroscopic Analysis for the Characteristics of a Large Plate Heat Exchanger through a Microscopic Flow and Heat Transfer Analyses inside a Chevron Passages (Chevron 유로 내의 미시적 해석 결과를 통한 대형 판형열교환기 특성에 대한 준미시적 해석)

  • Lee, Na-Ri;Lee, Myung-Sung;Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1159-1165
    • /
    • 2009
  • In the present study, the flow and heat transfer characteristics of a large plate heat exchanger are investigated numerically. The flow passages are very complicated due to the grooved corrugation patterns of the plate surface so that the detailed mesh and the large amount of the computation time have to be required in the numerical simulation for the conjugate heat transfer analysis. In order to accomplish the efficient and fast analysis of the heat transfer characteristics in the plate heat exchanger, a semimicroscopic method using the porous media model has been investigated numerically. The results showed that the characteristics of the heat transfer and pressure drop, which are respectively presented with Colburn j-factor and Fanning f-factor, are in a good agreement between the detailed mesh and the porous media model. The results of the present study could be applicable to the numerical analysis of entire flow passages in the large plate heat exchanger using porous media treatment.

  • PDF

An experimental and numerical study on natural convection-radiation conjugate heat transfer in a three-dimensional enclosure having a protruding heat source (돌출 열원을 갖는 3차원 밀폐 공간내에서의 자연대류-복사 복합 열전달에 대한 실험적 및 수치적 연구)

  • Baek, Chang-In;Lee, Gwan-Su;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3344-3354
    • /
    • 1996
  • An experimental and numerical study on the three-dimensional natural convection-radiation conjugate heat transfer in the enclosure with heat generating chip has been performed. A 3-dimensional simulation model is developed by considering heat transfer phenomena by conduction-convection and radiation. Radiative transfer was analyzed with the discrete ordinates method. Experiments are conducted in order to validate the numerical model. Comparisons with the experimental data show that good agreement is obtained when the radiation effect is considered. The effects of the thermal conductivity of the substrate and power level on heat transfer are investigated. It is shown that radiation is the dominant heat transfer mode and the conductivity of the substrate has important effects on the heat transfer in the enclosure.

Enhancement of Heat Transfer from an Air-Cooled 3-Dimensional Module by means of Heat Spreading in the Board (기판의 열확산에 의한 3차원 공랭모듈로부터의 열전달촉진에 관한 연구)

  • Park, Sang-Hee;Hong, Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1022-1030
    • /
    • 2002
  • The experiments were performed with a $31{\times}31{\times}7mm^3$ simulated 3-dimensional module on the thermal conductive board of a parallel plate channel. The convective thermal conductance for the path from the module surface directly to airflow and conjugate thermal conductance for the path leading from the module to the floor by way of a module support, then, to the airflow were determined with several combinations of module-support-construction(210, 0.32, 0.021 K/W)/floor-material(398, 0.236W/mK) and channel height(15-30mm). As the result, it was found that the conjugate thermal conductance and the temperature distribution around the module depend on the thermal resistance of the module support, and the channel height. These configurations were designed to investigate on the feasibility of using the substrate as an effective heat spreader in the forced convective air-cooling of surface mounted heat source. The experimental results were discussed in the light of interactive nature of heat transfer through two paths, one directed from the module to the airflow and the other via the module support and the floor to the air.

Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow (열성층유동 곡관벽에서의 과도온도분포 예측)

  • Jo, J.C.;Cho, S.J.;Kim, Y.I.;Park, J.Y.;Kim, S.J.;Choi, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

A NUMERICAL STUDY ON THE CONJUGATE HEAT TRANSFER OF AN OIL COOLER WITH OFFSET STRIP FINS FOR VARIOUS-FLOW RATES (오일의 유량 변화와 오프셋 스트립 휜을 고려한 오일쿨러의 복합열전달 해석)

  • Park, S.W.;Choi, H.G.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Conjugate heat transfer of an automotive oil cooler with offset-strip fins was numerically investigated to predict the performance of the oil cooler for various flow-rates. The simulations were conducted by directly modeling offset-strip fins with unstructured meshes. The incompressible Navier-Stokes equations coupled with energy equation were used for the present simulations. Heat transfer characteristics of the oil cooler was compared well with experimental results and the errors were approximately within 5 percents. It was found that the performance of the oil cooler increased as the flow-rate increased up to the flow-rate of 12 L/min, but the performance seemed to be saturated beyond a critical flow-rate, which was estimated as 15 L/min. Furthermore, it was confirmed that compared to the performance without fins, that of the oil cooler with offset-strip fins was increased by about 75 percents.

Conjugate Heat Transfer in Cylindrical Annulus for an Insulated Tube (단열관을 위한 원통 환상공간 내에서의 복합 열전달)

  • Kang, B.H.;Yang, S.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.633-641
    • /
    • 1995
  • The effect of the gap width on conjugate heat transfer in the cylindrical annulus for an insulated tube has been studied numerically by the finite difference method. The parameters considered here are the Rayleigh number, Ra, the dimensionless insulated wall thickness, $W/D_i$ and the dimensionless gap width, S/W. As S/W increases, the mean wall temperature increases at the inside wall of annulus and decreases at the outside walls of annulus and the insulated tube at $S/W{\leq}0.5$, and then slightly increases at $Re=10^4$, $W/D_i=1.47$. The heat transfer rate decreases at $S/W{\leq}0.5$ and then increases apparently as S/W increases at $Re=10^4$, W/Df=1.47. Therefore, it is considered that $$S/W{\sim_=}0.5$$ is the optimum gap width for the effect of insulation at $Re=10^4$, $W/D_f=1.47$.

  • PDF

A Numerical Simulation of Flow and Heat Transfer in a Dimple-type Plate Heat Exchanger (딤플형 판형 열교환기의 유동 및 전열특성에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Park, Hyoung-Joon;Ryu, Hea-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • In the present study, the characteristics on the internal flow and heat transfer of the dimple-type plate heat exchanger were numerically investigated. For the numerical analysis, the conjugate heat transfer analysis between hot fluid-separating plate-cold fluid was performed using the periodic boundary condition at the center area of the plate and appropriate inlet and outlet conditions for the two streams. The numerical results were validated by the comparison with the experimental data. From these results, the correlations of the Colburn j-factor for the heat transfer and the Fanning f-factor for the flow friction were obtained. The present results could be applicable for the optimal design of dimple-type plate heat exchanger.

Conjugate Heat Transfer Analysis of High Pressure Turbine with Secondary Flow Path and Thermal Barrier Coating (2차유로 및 열차폐 코팅을 고려한 고압터빈의 열유동 복합해석)

  • Kang, Young-Seok;Rhee, Dong Ho;Cha, Bong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2015
  • Conjugate heat analysis on a high pressure turbine stage including secondary flow paths has been carried out. The secondary flow paths were designed to be located in front of the nozzle and between the nozzle and rotor domains. Thermal boundary conditions such as empirical based temperature or heat transfer coefficient were specified at nozzle and rotor solid domains. To create heat transfer interface between the nozzle solid domain and the rotor fluid domain, frozen rotor with automatic pitch control was used assuming that there is little temperature variation along the circumferential direction at the nozzle solid and rotor fluid domain interface. The simulation results showed that secondary flow injected from the secondary flow path not only prevents main flow from penetrating into the secondary flow path, but also effectively cools down the nozzle and rotor surfaces. Also thermal barrier coating with different thickness was numerically implemented on the nozzle surface. The thermal barrier coating further reduces temperature gradient over the entire nozzle surface as well as the overall temperature level.

Unsteady heat exchange at the dry spent nuclear fuel storage

  • Alyokhina, Svitlana;Kostikov, Andrii
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1457-1462
    • /
    • 2017
  • Unsteady thermal processes in storage containers with spent nuclear fuel were modeled. The daily fluctuations of outer ambient temperatures were taken into account. The modeling approach, which is based on the solving of conjugate and inverse heat transfer problems, was verified by comparison of measured and calculated temperatures in outer channels. The time delays in the reaching of maximal temperatures for each spent fuel assembly were calculated. Results of numerical investigations show that daily fluctuation of outer temperatures does not have a large influence on the maximal temperatures of stored spent fuel, so that fluctuation can be neglected and only daily average temperature should be considered for safety estimation using the "best estimation" approach.