• 제목/요약/키워드: Conical Flame

검색결과 9건 처리시간 0.023초

레이저 유도 공동 점화방식을 이용한 예혼합기 연소 특성 향상 (Combustion Enhancemen of Premixed Mixtures Using Laser-Induced Cavity Ignition)

  • 모하메드하산;고영성;정석호
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, a new type of laser-induced ignition using a conical cavity has been developed to utilize all the available incident laser energy. In the method, it is possibile to ignite combustible methane/air mixtures by directing a laser beam of a constant small diameter into a small conical cavity, without focusing the laser beam. Shadow graphs for the early stage of combustion process show that a hot gas jet is ejected from the cavity, especially with lean mixture. After a very show time, the hot gas jet finishes issuing and the flame behavior is quite similar to flame propagation initiated by a conventional spark ignition. The combustion process using the new method exhibits more rapid pressure increase and a higher maximum pressure rise than that of the center ignition using laser-induced spark, with significant decrease in the combustion time. Also, the new ignition method is numerically modeled to simulate the flame kernel development and subsequent combustion process using the KIVA-IIcode. The calculated results show satisfactory agreement with experimental results.

  • PDF

천연가스의 연소속도 측정에 관한 실험적 연구 (An experimental study on the burning velocity measurement of natural gas)

  • 유현석;한정옥;방효선
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.195-201
    • /
    • 1997
  • Static and non-static flame methods were used to measure the laminar burning velocity of methane, ethane and natural gas. The flame slot angle and velocity of unburned gas mixture were determined by Schlieren method and LDV, respectively, for static flame. The diameter of nozzle was selected as 11 mm. The experimental results containing the stretch effect showed that the maximum burning velocities were 41.5 for natural gas, 40.8 for methane and 43.4 cm/sec for ethane on equivalence ratio of 1.1. Constant volume combustion chamber was also used for non-static flame. The propagation process of flame front was visualized by high speed camera during constant pressure. The maximum burning velocity of natural gas was determined as 42.1 cm/sec on equivalence ratio of 1.15.

마이크로 튜브 연소기의 연소특성에 대한 수치해석 연구 (Numerical Study of Combustion Characteristics Inside a Micro-Tube Combustor)

  • 오창보;최병일;한용식;김명배
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1352-1359
    • /
    • 2005
  • Unsteady simulations were performed to investigate the flame structure and the dynamic behavior of a premixed flame exposed to the wall heat loss. A 3-step global reaction mechanism was adopted in this study. Simulations were performed for two tube combustors with inner diameters($d_i$) of 1mm and 4mm. The material of tube combustor was assumed to be a Silicon Nitride($Si_{3}N_4$). The heat loss from the outer tube wall was controlled by adjusting the amount of convective and radiative heat loss. A conical premixed flame could be stabilized inside a tube of $d_i=4mm$. The flame stability inside a tube of $d_i=4mm$ combustor was not much sensitive to the amount of heat loss. In case of a tube of $d_i=1mm$, an oscillating flame was observed in very low heat loss condition and a flame could not be sustained in realistic heat loss condition.

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular Jets

  • Kim K. N.;Joung J. H.;Jin S. H.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.147-155
    • /
    • 2004
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^*$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The flame shape during flame oscillation was reconfirmed by a synchronized PIV experiment. The velocity and pressure field were obtained from PIV. The minimum pressure was formed near the edge of flame representing circulation. By comparing the results of sound pressure, flame luminosity and PIV, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames.

  • PDF

연료유량 변화에 따른 원추형 MILD 연소로의 수치적 해석 (Numerical study of a conical MILD combustor with varing the fuel flow rate)

  • 김태권
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3370-3375
    • /
    • 2014
  • MILD(Moderate and Intense Low Oxygen Dilution) 연소는 열효율 향상과 유해배출가스 저감의 상반된 관계를 해결하기 위한 하나의 각광받는 기술이다. 연소가스의 재순환을 이용하여 고온 연소시에 질소산화물을 낮게 유지함과 동시에 연소로 내부온도를 균일화함으로써 열효율을 향상시킬 수 있는 기술이다. 본 연구는 실험실 규모의 노에서 원추형 MILD 연소기의 연소특성을 나타내고 있다. 연구의 조건은 공기의 유량은 일정하게 하면서 가스 연료 유량을 변화시켜 당량비를 변화시켰다. 이 결과 노 내에서 MILD 연소영역이 잘 구현되었고, 당량비 0.69~0.83의 범위에 걸쳐서 노(爐)내에서의 온도와 배출가스의 농도가 각각 예측되었다. 이 당량비 구간에서 최고화염온도 영역과 주 반응영역에서의 온도차가 약 $300^{\circ}C$의 안정적인 화염 영역의 존재를 확인하였다.

환형제트에서의 메탄과 공기의 층류 예혼합 화염에서 발생되는 자발적인 소음에 대한 실험적 연구 (Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular JetsPut)

  • 진성호;정재훈;권성준;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.159-165
    • /
    • 2003
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^{\ast}$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The measured $CH^{\ast}$ chemiluminescence data were analyzed from which the corresponding sound pressure has been calculated. By comparing the data with those of measured ones, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames. The flame stability regime was influenced sensitively to the supplying air through the inner tube.

  • PDF

스월 예혼합 버너의 연소 특성에 관한 실험적 연구 (Experimental Study on Combustion Characteristics of a Swirl-stabilized Conical Burner)

  • 김구;조주형;이동석;김한;손채훈;이상민;김민국;안국영
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2014
  • Experimental study has been carried out to understand combustion characteristics of a swirl-stabilized premixed gas turbine combustor for power generation. $NO_x$ and CO emissions, extinction limit, pressure loss, and temperature distribution were measured for various operating conditions. Results show that, with increasing inlet air temperature, $NO_x$ is increased due to a higher adiabatic flame temperature while CO is increased or decreased for low or high A/F ratio regime, respectively. depending on the flame location. With decreasing load from the design condition, $NO_x$ is decreased as thermal load is reduced. With further decreasing load, however, $NO_x$ is increased due to a longer residence time. CO is decreased and then increased with decreasing load. Flame extinction limit is extended with increasing inlet air temperature as the recirculation strength is enhanced.

디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I) (A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine)

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권1호
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF