• Title/Summary/Keyword: Congestion Information

Search Result 1,186, Processing Time 0.031 seconds

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

A Rate Control Scheme Considering Congestion Patterns in Wireless Sensor Networks (무선 센서 네트워크에서 혼잡 패턴을 고려한 전송률 조절 기법)

  • Kang, Kyung-Hyun;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1229-1233
    • /
    • 2010
  • In event-driven wireless sensor networks, network congestion occurs when event data, which have higher transmission rates than periodic sensing data, arc forwarded to bottleneck links. As the congestion continues, congestion collapse is triggered, so most of packets from source nodes are failed to transmit to a sink node. Rate control schemes can be a solution for preventing the congestion collapse problem. In this paper, a rate control scheme that each node controls child node's data rate based on congestion patterns is proposed. Experiments show that the proposed scheme effectively controls network congestion and successfully transmits more event data packets to a sink node than existing rate control schemes.

Enhancing TCP Performance over Wireless Network with Variable Segment Size

  • Park, Keuntae;Park, Sangho;Park, Daeyeon
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.108-117
    • /
    • 2002
  • TCP, which was developed on the basis of wired links, supposes that packet losses are caused by network congestion. In a wireless network, however, packet losses due to data corruption occur frequently. Since TCP does not distinguish loss types, it applies its congestion control mechanism to non-congestion losses as well as congestion losses. As a result, the throughput of TCP is degraded. To solve this problem of TCP over wireless links, previous researches, such as split-connection and end-to-end schemes, tried to distinguish the loss types and applied the congestion control to only congestion losses; yet they do nothing for non-congestion losses. We propose a novel transport protocol for wireless networks. The protocol called VS-TCP (Variable Segment size Transmission Control Protocol) has a reaction mechanism for a non-congestion loss. VS-TCP varies a segment size according to a non-congestion loss rate, and therefore enhances the performance. If packet losses due to data corruption occur frequently, VS-TCP decreases a segment size in order to reduce both the retransmission overhead and packet corruption probability. If packets are rarely lost, it increases the size so as to lower the header overhead. Via simulations, we compared VS-TCP and other schemes. Our results show that the segment-size variation mechanism of VS-TCP achieves a substantial performance enhancement.

Congestion Control Method using Improved RED Algorithm in the VOQ Architecture (VOQ에서 개선된 RED를 이용한 Congestion 제어 방법)

  • 조한성;신상호;최문철;안순신
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.415-417
    • /
    • 2001
  • RED 알고리즘은 큐 avg가 threshold를 넘으면 일정한 확률로 패킷을 drop하여 congestion을 제어하는 알고리즘이다. RED 알고리즘은 큐 자신의 avg만을 고려하여 drop 확률을 결정한다. 하지만, VOQ를 사용하는 input queueing에서 같은 출력 단을 목적지로 하는 다른 큐들의 사이즈가 큐 내부에서의 delay에 영향을 미치기 때문에 그 큐들의 avg를 고려하는 것이 필요하다. 본 논문에서는 기존의 RED 방법의 drop 확률 결정에서 같은 출력 단을 목적지로 하는 큐들의 avg 값을 고려하는 알고리즘을 제안한다. 시뮬레이션을 통하여 제안한 알고리즘을 구현하고, 성능을 기존의 RED 알고리즘과 비교한다.

Congestion Detection and Control Strategies for Multipath Traffic in Wireless Sensor Networks

  • Razzaque, Md. Abdur;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.465-466
    • /
    • 2009
  • This paper investigates congestion detection and control strategies for multi-path traffic (CDCM) diss emination in lifetime-constrained wireless sensor networks. CDCM jointly exploits packet arrival rate, succ essful packet delivery rate and current buffer status of a node to measure the congestion level. Our objec tive is to develop adaptive traffic rate update policies that can increase the reliability and the network lif etime. Our simulation results show that the proposed CDCM scheme provides with good performance.

A Congestion Control Algorithm for the fairness Improvement of TCP Vegas (TCP Vegas의 공정성 향상을 위한 혼잡 제어 알고리즘)

  • 오민철;송병훈;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.269-279
    • /
    • 2004
  • The most important factor influencing the robustness of the Internet Is the end-to-end TCP congestion control. However, the congestion control scheme of TCP Reno, the most popular TCP version on the Internet, employs passive congestion indication. It makes worse the network congestion. Recently, Brakmo and Peterson have proposed a new version of TCP, which is named TCP Vegas, with a fundamentally different congestion control scheme from that of the Reno. Many studies indicate that the Vegas is able to achieve better throughput and higher stability than the Reno. But there are two unfairness problems in Vegas. These problems hinder the spread of the Vegas in current Internet. In this paper, in order to solve these unfairness problems, we propose a new congestion control algorithm called TCP PowerVegas. The existing Vegas depends mainly only on the rtt(round trip time), but the proposed PowerVegas use the new congestion control scheme combined the Information on the rtt with the information on the packet loss. Therefore the PowerVegas performs the congestion control more competitively than the Vegas. Thus, the PowerVegas is able to solve effectively these unfairness problems which the Vegas has experienced. To evaluate the proposed approach, we compare the performance among PowerVegas, Reno and Vegas under same network environment. Using simulation, the PowerVegas is able to achieve better throughput and higher stability than the Reno and is shown to achieve much better fairness than the existing Vegas.

Improving TCP Performance by Limiting Congestion Window in Fixed Bandwidth Networks (고정대역 네트워크에서 혼잡윈도우 제한에 의한 TCP 성능개선)

  • Park, Tae-Joon;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.149-158
    • /
    • 2005
  • This paper proposes a congestion avoidance algorithm which provides stable throughput and transmission rate regardless of buffer size by limiting the TCP congestion window in fixed bandwidth networks. Additive Increase, Multiplicative Decrease (AIMD) is the most commonly used congestion control algorithm. But, the AIMD-based TCP congestion control method causes unnecessary packet losses and retransmissions from the congestion window increment for available bandwidth verification when used in fixed bandwidth networks. In addition, the saw tooth variation of TCP throughput is inappropriate to be adopted for the applications that require low bandwidth variation. We present an algorithm in which congestion window can be limited under appropriate circumstances to avoid congestion losses while still addressing fairness issues. The maximum congestion window is determined from delay information to avoid queueing at the bottleneck node, hence stabilizes the throughput and the transmission rate of the connection without buffer and window control process. Simulations have performed to verify compatibility, steady state throughput, steady state packet loss count, and the variance of congestion window. The proposed algorithm can be easily adopted to the sender and is easy to deploy avoiding changes in network routers and user programs. The proposed algorithm can be applied to enhance the performance of the high-speed access network which is one of the fixed bandwidth networks.

Improving TCP Performance through Pre-detection of Route Failure in Mobile Ad Hoc Networks (Ad Hoc 망에서 경로단절 사전감지를 통한 TCP 성능향상)

  • Lee Byoung-Yeul;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.900-910
    • /
    • 2004
  • Route failure is mainly caused by mobility of mobile host in ad hoc networks. Route failure, which may lead to sudden packet losses and delays, is losing the route from source to destination. In this situation, TCP assumes that congestion has occurred within the network and also initiates the congestion control procedures. Congestion control algorithm provides the means for the source to deal with lost packets. TCP performance in ad hoc environments will be degraded as TCP source cannot distinguish congestion from route failure. In this paper, we propose TCP-P as pre-detection approach to deal with route failure. TCP-P freezes TCP through pre-detection of route failure. Route failure information of the proposed mechanism is obtained not by routing protocol but by MAC protocol. The intermediated node, obtaining route failure information by its MAC layer, relays the information to TCP source and lets TCP source stop the congestion control algorithm. Results reveal that TCP-P responding with proactive manner outperforms other approaches in terms of communication throughput under the presence of node mobility.

Congestion Control to Improve QoS with TCP Traffic (TCP트래픽에 대한 QoS를 향상시키기 위한 폭주제어)

  • 양진영;이팔진;김종화
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • End-to-end congestion control mechanism have been critical to the robustness and stability of the Internet. Most of today's Internet traffic is TCP, and we expect this to remain so in the future. TCP/IP is the intermediate transport layer candidate for today's applications. TCP uses an adaptive window-based flow control. The congestion avoidance and control algorithms deployed by TCP aims at using the available network bandwidth. This paper compares different congestion control policies, and proposes the new design mechanism for future public networks

  • PDF

Single-row Routing Algorithm with Between Node Congestion (간노드과잉을 고려한 단층 열 라우팅 알고리즘)

  • 이남일;이상조
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.603-609
    • /
    • 1987
  • In this paper, the single-row routing algorithm for munimizing the street congestion and reducing the between node congestion is deviced. To reduce the between node congestion, reference line crossing is defined and used. Reducing the number of total reference line crossing means reducing the total length which help reduce the power consumption of the integrated system and reducing the between node congestin which help reduce the wiring area. This algorithm has been implemented and tested with various example, then produced good results.

  • PDF