• Title/Summary/Keyword: Conformers

Search Result 87, Processing Time 0.022 seconds

Ab Initio Study of Conformers of p-tert-Butylcalix[4]crown-6-ether Complexed with Alkyl Ammonium Cations

  • Choe, Jong-In;Jang, Suk-Kyu;Nanbu, Shinkoh
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.891-896
    • /
    • 2002
  • The structures and energies of p-tert-butylcalix[4]crown-6-ether(1) in various conformers and their alkyl ammonium complexes have been calculated by ab initio HF/6-31G quantum mechanics method. We have tried to obtain the relative affinity of partial-cone and 1,3-alternate conformers of 1 for alkyl ammonium guests by comparison with its cone-shaped analogue. We have also calculated the relative complexation efficiency of these host-guest complexes focusing on the binding sites of $crown-\sigma-enther$ moiety or benzene-rings pocket of the host molecule 1. These calculations revealed that the crown moiey has better complexation efficiency than upper rim part of calyx[4]arene that is in similar trend to the cone-shaped complexes.

Computational Study of Proline - Water Cluster

  • Lee, Kyung-Min;Park, Sung-Woo;Jeon, In-Sun;Lee, Bo-Ra;Ahn, Doo-Sik;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.909-912
    • /
    • 2005
  • Calculations are presented for the structures of various conformers of the bare proline and proline –($H_2O$) cluster. The effects of hydrogen bonding with a water molecule on the relative stability of the low energy conformers of proline are examined. Microsolvation by a water molecule is predicted to affect the relative stability, structures and the infrared frequencies of the conformers to a large degree.

mPW1PW91 Conformational Study of Di-t-butyl-dinitro-tetramethoxysulfonylcalix[4]arene

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • The structures of the conformers for 1,3-di-t-butyl-2,4-dinitro-tetramethoxysulfonylcalix[4]arene (1) and 1,2-di-t-butyl-3,4-dinitro-tetramethoxysulfonylcalix[4]arene (2) were optimized using DFT BLYP and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the total electronic and Gibbs free energies and the differences between the various conformations (cone, partial-cone (PC), 1,2-alternate, and 1,3-alternate) of 1 and 2. For both compounds, the 1,3-alternate (1,3-A) conformers were calculated to be the most stable, which correlate very well with the experimental results. The orderings of the relative stability of 1 and 2 that resulted from the mPW1PW91/6-31G(d,p) calculations are the following: 1: 1,3-A (syn) > PC (syn) > PC (anti) > 1,2-A (anti) > CONE (syn); 2: 1,3-A (anti) > PC (anti) > PC (syn) > 1,2-A (anti) > 1,2-A (syn) > CONE (syn). The BLYP/6-31G(d) calculated IR spectra of the most stable 1,3-A conformers of 1 and 2 are compared.

Theoretical Study of the Hydration Effects on the Conformation of N-pivaloyl-L-prolyl-N-methyl-N'-isopropyl-L-alaninamide

  • Choe, Sang-Joon;Kim, Un-Sik;Kang, Young-Kee;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 1984
  • To investigate the hydration effects on the conformational changes of N-pivaloly-L-prolyl-N-methyl-N'-isopropyl-L-alanin amide (PPMIA), the conformational free energy changes have been calculated by using an empirical potential function varying all the independent degrees of freedom of PPMIA backbones. It is found that cis conformers are folded by a strong intramolecular hydrogen bond involving both terminal CO and NH groups whereas trans conformers accommodate the open conformation. Conformers in the free state are proved to be less stable than in the hydrated state. The free energy changes of cis and trans PPMIA due to the hydration are -50.5 and -39.8 kcal/mole, their conformational energy changes are -52.3 and -41.0 kcal/mole, and their conformational entropy changes are -5.9 and -4.0 e.u., respectively. The free energy changes of cis PPMIA to trans PPMIA in the free and hydrated states are 5.3 and 16.0 kcal/mole, their conformational energy changes are 7.6 and 18.8 kcal/mole, and the entropy changes due to the conformational transitions correspond to 7.5 and 9.4 e.u., respectively. From these results, it is found that the bound water molecules play an important role in stabilizing the conformation of PPMIA.

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Synthesis of Three Ring Type Compounds with Fluorine and NCS Groups as Candidates for VA mode Liquid Crystal Display

  • Heo, E.Y.;Kim, Y.B.;Kim, S.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.571-574
    • /
    • 2003
  • Three ring type liquid crystalline compounds having 4-alklycyclohexyl group, 1,2-difluorobenzene and phenylisothiocyanate moieties as main skeleton were designed to have negative dielectricity. However, the compounds with 2,3,2'-trifluoro-3'-isothiocyanated biphenylcyclohexane core did not exhibit the nematic liquid crystalline phase because of two conformers by interaction of isothiocyanate and adjacent fluorine atoms. Also, 4-alkyl-2,2',3'-trifluoro-3-isothiocyanated biphenylcyclohexane core was designed expecting to have uniform conformers of isothiocyanate group. In the course of developing polyimides for VA mode LCD, we synthesized alkyl-3,5-diaminobenzene efficiently with various length of alkyl chains from commercially available di-t-butyl malonate and 3,5-dinitrobenzoyl chloride as starting material.

  • PDF

SPECTRAL AND PROTOPHYSICAL PROPERTIES OF 1-PYRAZINYL-2-(3- QUINOLINYL)ETHYLENE

  • Bong, Pill-Hoon;Ryoo, Jae-Hwan
    • Journal of Photoscience
    • /
    • v.6 no.4
    • /
    • pp.171-176
    • /
    • 1999
  • The spectral and photophysical properties of trans-1-pyrazinyl-2-(3-quinolinyl)ethylene (trans-3- PyQE) are investigated under various conditions in order to obtain information on ground and excited states. The absorption spectrum of trans-3-PyQE changes slightly with varying degree of solvent polarity ; the. fluorescence spectrum is shifted to the red and becomes broad and structureless as the solvent polarity increases. The fluorescence quantum yield increases with increasing solvent polarity. The fluorescence intensity of trans-3-PyQE decreases as the concentration of methyl iodide increases. The fluorescence spectra of trans-3-PyQE changes markedly upon the variation of the excitation wavelength, presumably due to an equilibrium between conformers originating from the rotation of a quasi-single bond between the quinolinyl group and ethylenic carbon atom. These results indicate that the spectral and photophysical properties of trans-3-PyQE are strongly influenced by solvent, heavy atom, and an equilibrium between conformers

  • PDF

Computational Study of Hydrogen Bonding in Phenol-acetonitrile-water Clusters

  • Ahn, Doo-Sik;Lee, Sung-Yul;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1161-1164
    • /
    • 2004
  • Calculations are presented for phenol ?acetonitrile - $(water)_n$ (n = 1-3) clusters. We examine the nature of interactions in the mixed clusters by calculating and comparing the structures, relative energies and harmonic frequencies of isomers with different type of hydrogen bonding. The conformers exhibit quite different patterns in the shifts of the CN and OH stretching frequencies, depending on the type of hydrogen bonding. Cyclic hydrogen bonding among the water molecule(s), acetonitrile and phenolic OH proves very important in determining the relative stability. It is also shown that acetonitrile tends to bind to the OH group of phenol in low energy conformers.

Investigation of the Binding Affinity between Styrylquinoline Inhibitors and HIV Integrase Using Calculated Nuclear Quadrupole Coupling Constant (NQCC) Parameters (A Theoretical ab initio Study)

  • Rafiee, Marjan A.;Partoee, Tayyebe
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.208-212
    • /
    • 2011
  • In this work, the calculated nuclear quadrupole coupling constants of $^{17}O$ in some styrylquinoline conformers were presented. The calculations were carried out to find the relationships between the charge distribution of styrylquinolines and their pharmaceutical behavior and to explore the differences among the electronic structures of some conformers of these potent HIV IN inhibitors. Furthermore, the HIV IN inhibitory of R1 and R2 rotamers was compared. On the basis of our results: - Charge density on oxygen atoms of carboxyl moiety has a dominant role in the drug activity. - The a conformer in which a divalent hydrogen atom is a link, has more capability in antiviral drug treatment. - The R1 conformer, as a $Mg^{+2}$ chelating agent, is better than R2 conformer and thus it is more inhibitor of HIV IN.

Effects of Microsolvation on the Stability of Zwitterionic Valine

  • Kim, Ju-Young;Won, Gang-Yeon;Lee, Sungyul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3797-3804
    • /
    • 2012
  • We present calculations for valine (Val) - $(H_2O)_n$ (n = 0-5) to examine the effects of microsolvating water on the relative stability of the zwitterionic vs. canonical forms of Val. We calculate the structures, energies and Gibbs free energies of the conformers at B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p) and MP2/aug-cc-pvdz level of theory. We find that five water molecules are needed to stabilize the zwitterionic form of Val. By calculating the barriers of the canonical ${\leftrightarrow}$ zwitterionic pathways of Val - $(H_2O)_5$ conformers, we suggest that both forms of Val - $(H_2O)_5$ may be observed in low temperature gas phase.