• Title/Summary/Keyword: Conformation in solution

Search Result 130, Processing Time 0.033 seconds

Interaction between Poly(L-lysine) and Poly(N-isopropyl acrylamide-co-acrylic acid) in Aqueous Solution

  • Sung, Yong-Kiel;Yoo, Mi-Kyong;Cho, Chong-Su
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2000
  • A series of pH/temperature sensitive polymers were synthesized by copolymerizing N-isopro-pyl acrylamide(NIPAAm) and acrylic acid(AAc) . The influence of polyelectrolyte between poly(allyl amine) (PAA) and poly(L-lysine)(PLL) on the lower critical solution temperature(LCST) of pH/temperature sensitive polymer was compared in the range of pH 2∼12. The LCST of PNIPAAm/water in aqueous poly(NIPAAm-co-AAc) solution was determined by cloud point measurements. A polyelectrolyte complex was prepared by mixing poly(NIPAAm-co-AAc) with poly(allyl amine) (PAA) or poly(L-lysine) (PLL) solutions as anionic and cationic polyelectrolytes, respectively. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The cloud points of PNIPAAm in the aqueous copolymers solutions were stongly affected by pH, the presence of polyelectrolyte solute, AAc content, and charge density. The polyelectrolyte complex was formed at neutral condition. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm in the aqueous copolymer solution was stronger than that of poly(allyl amine)(PAA). Although polymer-polymer complex was formed between poly(NIPAAm-co-AAc) and PLL, the conformational change of PLL did not occur due to steric hinderance of bulky N-isopropyl groups of PNIPAAm.

  • PDF

Structure of an Antimicrobial Peptide Buforin II

  • Yi, Gwan-Su;Park, Chan-Bae;Kim, Sun-Chang;Chaejoon Cheong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.29-29
    • /
    • 1996
  • The structure of an antimicrobial peptide buforin II has been studied by $^1$H NMR and CD spectroscopy. Buforin II is flexible and random structure in H$_2$O but the parts of buforin II become helical structure in trifluoroethanol (TFE)/H$_2$O (1:1, v/v) solution. From the restrained molecular dynamics calculation using NMR data, we obtained the possible conformation of buforin II in TFE/H$_2$O solution. (omitted)

  • PDF

Conformation of Antiimflammatory Fenamates (소염진통성 페나메이트 유도체들의 형태분석)

  • Chung, Uoo-Tae;Kang, Kee-Long;Lee, Sung-Hee
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.632-639
    • /
    • 1996
  • Most stable conformers of some antiinflammatory fenamates were obtained by conformational free energy change calculations. Conformational energies for the molecules as unhydrate d state were estimated first, and those as hydrated state were calculated then to simulate the molecules in aqueous solution using a hydration shell model. The initial geometries of the molecules were obtained either from X-ray crystallographic data or from homologous molecular fragments. The bond lengths and angles were not varied, but all the torsion angles were varied step by step during the conformational free energy surface searching. The results show that there are several feasible conformations for a compound. And the molecules are somewhat stabilized by hydration (-${\delta}G_{hyd}{\cong}$13 to 16kcal/mole), but the conformations were not changed significantly by the hydration itself. There seems to be a strong tendency of intramolecular hydrogen bonding between imino hydrogen and carboxyl oxygen of the compounds. As a result, the carboxyl group cannot be rotated freely, and the rotation of the second aromatic ring is the main reason for the conformational variations of the compounds. The ECEPP force fields via the program CONBIO were used throughout this study.

  • PDF

Structure-Function of the TNF Receptor-like Cysteine-rich Domain of Osteoprotegerin

  • Shin, Joon;Kim, Young-Mee;Li, Song-Zhe;Lim, Sung-Kil;Lee, Weontae
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.352-357
    • /
    • 2008
  • Osteoprotegerin (OPG) is a soluble decoy receptor that inhibits osteoclastogenesis and is closely associated with bone resorption processes. We have designed and determined the solution structures of potent OPG analogue peptides, derived from sequences of the cysteine-rich domain of OPG. The inhibitory effects of the peptides on osteoclastogenesis are dose-dependent ($10^{-6}M-10^{-4}M$), and the activity of the linear peptide at $10^{-4}M$ is ten-fold higher than that of the cyclic OPG peptide. Both linear and cyclic peptides have a ${\beta}$-turn-like conformation and the cyclic peptide has a rigid conformation, suggesting that structural flexibility is an important factor for receptor binding. Based on structural and biochemical information about RANKL and the OPG peptides, we suggest that complex formation between the peptide and RANKL is mediated by both hydrophobic and hydrogen bonding interactions. These results provide structural insights that should aid in the design of peptidyl-mimetic inhibitors for treating metabolic bone diseases caused by abnormal osteoclast recruitment.

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Intra-/lntermolecular Excimer Emission of Syndiotactic Polystyrene Having Carbazole Substituents (카바졸 치환체를 가지는 신디오탁틱 폴리스티렌의 분자내/분자간 엑시머 발광)

  • Jeong, Seon-Ju;Jung, In-Tae;Yoon, Keun-Byoung
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.314-319
    • /
    • 2011
  • The syndiotactic and atactic poly (2-N-carbazoylrnethyl) styrenes were obtained by a half-titanocene catalyst and a radical initiator for the investigation of photophysical properties, especially excimer formation. The atactic polymer exhibited only monomer emission, but the syndiotactic polymer showed both excimer emission and monomer emission resulting from the partial overlapping arrangement of carbazole pendants, The emission band of syndiotactic polymer was considerably dependent on solution concentration and temperature, however atactic polymer was independent because the excimer formation of syndiotactic helical conformation was more favorable than that of the random coil conformation of atactic polymer.

Solution Structure of pA2, the Mimotopic Peptide of Apolipoprotein A-I, by NMR Spectroscopy

  • Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4016-4020
    • /
    • 2011
  • A number of mimetic peptides of apolipoprotein A-I, a major component for high density lipoproteins (HDL), were screened from the phase-displayed random peptide library by utilizing monoclonal antibodies (A12). A mimetic peptide for A12 epitope against apolipoprotein A-I was selected as FVLVRDTFPSSVCCP(pA2) exhibiting 45% homology with Apo A-I in the BLAST search. Solution structure determination of this mimotope was made by using 2D-NMR data and NMR-based distance geometry (DG)/molecular dynamic calculations. The resulting DG structures had low penalty value of 0.4-0.6 ${\AA}^2$ and the total RMSD of 0.7-1.7 ${\AA}$. The mimotope pA2 exhibited a characteristic ${\beta}$-turn conformation from Val[2] to Phe[8] near Pro[9] residue.

The Stress Distribution in a Flat Plate with a Reinforced Circular Hole under Biaxial Loading (보강(補强)된 원형(圓形)구멍을 가진 평판(平板)의 이축하중하(二軸荷重下)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1971
  • The effect of reinforced circular hole in a flat plate under general biaxial loading conditions is considered. The reinforcement is achieved by attaching a circular ring of uniform rectangular cross section along the boundary of the hole. This investigation includes a theoretical solution and an experimental conformation. In the theoretical analysis, Gurney's method is used to obtain a solution for the stress distribution and the solution is expressed in a general form, so that it can be applicable to the case of general biaxial loading and general values of Poisson's ratios. In the experimental work a systematic series of photoelastic models, as shown in Fig.5 and Table 1, were analyzed on polariscope. The experimental results were in good agreement with the theoretical ones, as shown in Fig.8 and 9. The conclusions derived are as follows: 1) The theoretical results, given in Eq. $(1){\sim}(5)$, are sufficient in accuracy for the engineering design purpose. 2) The stress concentration factor decreases as the ratio n increases, but not significant beyond n=3. 3) The stress concentration factor increase as the ratio m increases, but not significant below m=0.7.

  • PDF

Nuclear Magnetic Resonance Spectroscopic Study on Inclusion Complexation of Paracyclophane with Naphthalene Derivatives in Aqueous Solution (프로톤 핵자기공명스펙트럼 측정법에 의한 수용액중 파라시클로판과 나프탈렌 유도체들간의 포접 복합체 형성에 관한 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.155-163
    • /
    • 1993
  • Inclusion complexation of 1,7,21,27-tetraaza[7.1.7.1]paracyclophane (CPM 55) with 2,7-dihydroxynaphthalene (2,7-DHN) or 1,3-dihydroxynaphthalene (1,3-DHN) in pD 1.17 $DCl-D_2O$ solution was investigated by $^1H$ nuclear magnetic resonance spectroscopy (NMR) using 4,4'-dimethylaminodiphenylmethane (ACM 11) as an acyclic analog of CPM 55. In CPM 55-naphthalene derivative complex, alkyl protons located in the cavity of CPM 55 were shown to be subjected to anisotropic shielding and protons of naphthalene moiety shifted remarkably to upfield. However, in ACM 11-naphthalene derivative systems, chemical shifts for protons of both DHN compounds were not significant. The remarkable chemical shift changes suggested that the naphthalene moiety of 2,7-DHN or 1,3-DHN was included in the hydrophobic cavity of CPM 55 in aqueous solution. From the continuous variation plots of induced chemical shifts of 2,7-DHN, it was found that 2,7-DHN was included in the cavity of CPM 55 at 1:1 molar stoichiometry. Both computer simulation of a inclusion complex and strong upfield chemical shift changes of 2,7-DHN protons supported the conformation of pseudoaxial inclusion as the presumed geometry of the host-guest complex.

  • PDF

Determination of the Solution Structure of Malonyl-CoA by Two-Dimensional Nuclear Magnetic Resonance Spectroscopy and Dynamical Simulated Annealing Calculations

  • Jung, Jin-Won;An, Jae-Hyung;Kim, Yu-Sam;Bang, Eun-Jung;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.288-293
    • /
    • 1999
  • In order to understand the initial interaction of the substrates malonate, ATP, and CoA with malonyl-CoA synthetase, the catalytic product malonyl-CoA was characterized by NMR spectroscopy and molecular modeling. To assign proton and carbon chemical shifts, two-dimensional $^1H-^1H$ DQF-COSY and $^1H-^{13}C$ HMBC experiments were used. The structure of malonyl-CoA in the solution phase was determined based on distance constraints from NOESY and ROESY spectra. The structures were well-converged around the pantetheine region with the pairwise RMSD value of 0.08 nm. The solution structure exhibited a compact folded conformation with intramolecular hydrogen bonds among its carbonyl and hydroxyl groups. These findings will help us to understand the initial interaction of malonate and CoA with malonyl-CoA synthetase.

  • PDF