• Title/Summary/Keyword: Confined jet

Search Result 75, Processing Time 0.024 seconds

An Experimental Study on the Effect of Fuel Dilution on the Propagation Velocity of Triple Flames in a Diverging Channel (연료희석이단면확대채널에형성된삼지화염의전파속도에미치는영향에관한실험적연구)

  • Seo, Jeong-Il;Shin, Hyun-Dong;Kim, Nam-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.13-18
    • /
    • 2007
  • When triple flames propagated in a diverging channel, the effects of fuel dilution on the lift-off characteristics of triple flames were investigated. A multi-slot burner was used to stabilize the lift-off flame especially at weak fuel concentration gradients. It was reported that there is a maximum propagation velocity at a critical concentration gradient in an open jet regardless of fuel dilution. The enhancement of a diffusion flame affected to increase the propagation velocity around critical concentration gradients. However, the influence of a confined channel on the structure of triple flames according to fuel dilution needs to be investigated compared with an open jet case. This study aimed to examine the effect of a confined channel on the structure and the propagation velocity of the triple flames according to fuel dilution. Lift-off height and propagation velocity of triple flames were investigated by employing three kinds of fuel compositions diluted by nitrogen (0%, 25%, 50% $N_2$), Fuel dilution reduced the propagation velocity of triple flame in a confined channel mainly due to the decrease of flame temperature in premixed branch. Despite the difference in fuel dilution, the propagation velocity has a maximum value at a specific fuel concentration gradient even though the critical concentration gradient increases with fuel dilution. And the critical concentration gradient in a confined channel is larger than that in an open jet due to enhancement of convective diffusion.

  • PDF

STUDY OF FLARE-ASSOCIATED X-RAY PLASMA EJECTIONS : II. MORPHOLOGICAL CLASSIFICATION

  • KIM YEON-HAN;MOON Y.-J.;CHO K.-S.;BONG SU-CHAN;PARK Y.-D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.171-177
    • /
    • 2004
  • X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.

OBSERVATIONS OF EUV RECURRING JETS IN AN ACTIVE REGION CONFINED BY CORONAL LOOPS

  • Zheng, Yan-Fang;Wang, Feng;Ji, Kai Fan;Deng, Hui
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.5
    • /
    • pp.183-190
    • /
    • 2013
  • Recurring jets, which are jets ejected from the same site, are a peculiar type among various solar jet phenomena. We report such recurring jets ejecting from the same site above an active region on January 22, 2012 with high-resolution multi-wavelength observations from Solar Dynamics Observatory(SDO). We found that the recurring jets had velocities, lengths and lifetimes, but had similar directions. The visible brightening appeared at the jet base before each jet erupted. All the plasma produced by the recurring jets could not overcome the large coronal loops. It seemed that the plasma ejecting from the jet base was confined and guided by preexisting coronal loops, but their directions were not along the paths of the loops. Two of the jets formed crossing structures with the same preexisting filament. We also examined the photospheric magnetic field at the jet base, and observed a visible flux emergence, convergence and cancellation. The four recurring jets all were associated with the impulsive cancellation between two opposite polarities occurring at the jet base during each eruption. In addition, we suggest that the fluxes, flowing out of the active region, might supply the energy for the recurring jets by examining the SDO/Helioseismic and Magnetic Imager (HMI) successive images. The observational results support the magnetic reconnection model of jets.

Heat transfer characteristics of impinging flat plate of multiple slot jets by changing of jet-to-jet distance (배열 슬롯제트의 노즐간격 변화에 따른 충돌면에서의 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho;Ko, Wan-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.534-539
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics on confined jet impinging plate using multiple slot jets has been performed. The effects of jet Reynolds numbers(Re=2000, 3950, 5900, 7900), dimensionlesss slot-to-plate distances(H/B=2, 4, 6, 8) and jet-to-jet distances(S=16B, 20B, 24B, 30B) on the local and average heat transfer coefficients have been examined. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. From the experimental results, it was found that the local and average heat transfer rates increase with increasing jet Reynolds number. Measurements of local heat transfer coefficients produced by multiple of slot jets have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. At S/B=20, Re=7900 and H/B=6, maximum average Nusselt number is obtained.

  • PDF

The Flow Field Structure of Jet-in-Cross Flow through the Perforated Damage Hole (관통 손상 구멍으로부터의 제트-교차 흐름의 유동장 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.551-559
    • /
    • 2014
  • The influence of the battle damage hole on the velocity and vorticity flow field have been studied by using particle image velocimetry. Time averaged velocity and vorticity vector fields in the vicinity of jet are presented. The perforated damage hole on a wing created from a hit by anti-air artillery was modeled as a 10% chord size hole which positioned at quarter chord. At low angles of attack, the vorticity in the forward side of the jet is cancelled due to mixing with the wing surface boundary layer. Stretching of vorticity in the backside of the jet generates a semi-cylindrical vortical layer that enclosing a domain with slow moving reverse flow. Conversely, at higher the angles of attack, the jet vorticity advected away from the wing surface and remains mostly confined to the jet. The mean flow behind the jet has a wake-like structure.

Numerical Study on the Cooling Characteristics of Pedestal Heat Source with an Confined Air Jet (제한벽이 있는 공기제트에 의한 돌출 발열체의 냉각 특성에 대한 수치 해석 연구)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • The air flow and heat transfer characteristics of an air jet impinging on a pedestal heat source has been investigated numerically to examine the effects of geometric parameters such as nozzle-to-pedestal spacing, nozzle diameter and pedestal size. Also, the parameters of Reynolds number, air jet power, supplied heat and thermal conductivity of pedestal have been studied to reveal how these affect the average Nusselt number. Hence, a two-dimensional turbulent model has been developed and adopted to simulate the fluid flow and heat transfer phenomena numerically. The results obtained from the model show that the nozzle-to-pedestal spacing, relative size of nozzle to pedestal and Reynolds number of air jet have a significant influence on the cooling characteristics of heated pedestal. Furthermore, some useful guidelines could be given to the application of cooling the heated pedestal.

  • PDF

Heat transfer characteristics of multiple slot jets at the surface of protruding heated blocks (돌출 발열블록 표면에서의 배열 충돌제트에 의한 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.274-279
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impinging multiple slot jets has been performed. The effects of jet-to-jet distances(S=16B, 24B), dimensionless nozzle-to-block distances(H/B=2, 6) and jet Reynolds numbers(Re=2000, 3900, 5800, 7800) on the local and average heat transfer coefficients have been examined with five isothermally heated blocks at streamwise block spacing(p/w=1). To clarify local heat transfer characteristics, naphthalene sublimation technique was used. From the results, it was found that the local and average heat transfer of heated blocks increases with decreasing jet-to-jet distance and increasing jet Reynolds number. Measurements of local heat transfer coefficients have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. In the case of S/B=16, H/B=6 and Re=7800, maximum average Nusselt number of overall blocks was obtained.

  • PDF

Numerical Study of Laminar Flow in a Combustor with a Planar Fuel Jet (Planar-Jet형 연소내 층류유동의 전산해석)

  • Eom, Jun-Seok;Kim, Do-Hyeong;Yang, Gyeong-Su;Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1644-1651
    • /
    • 2000
  • In this study, the confined laminar flow and transport around a square cylinder with a planar fuel jet are numerically simulated. Both rear and front jets are considered, respectively. In each case, various ratios of the jet velocity to the fixed upstream velocity are taken into consideration. In case of the rear jet, the high mass-fraction region is formed along the streamlines from the jet exit, and the oscillation of the force on the square cylinder eventually disappears as the jet velocity is close to the upstream velocity. In case of the front jet, drag is significantly reduced when the jet velocity ratio is grater than 1. The results obtained exhibit flow and scalar-mixing charactered in a planar combustor.

Computational Study of the Mild Combustion and Pollutant Emission Characteristics in Wall-confined Jet (벽면으로 둘러싸인 제트 유동장에서의 마일드연소 및 오염물질 배출특성에 관한 전산해석 연구)

  • Song, Keum Mi;Oh, Chang Bo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.263-266
    • /
    • 2012
  • The characteristics of mild combustion and pollutant emission were investigated computationally with supplied air stream temperature and dilution rate in jet flame. The air was diluted with main combustion products. As dilution rate increased at fixed air temperature, the temperature distribution of burner inside was uniformed and the maximum mole fraction of CO and NO was decreased. In addition, emission indices for NO, CO, and $CO_2$ were compared with air temperature and dilution rate.

  • PDF

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.