• 제목/요약/키워드: Configuration Variables

검색결과 234건 처리시간 0.028초

주기하중을 받는 보-기둥 접합부내 보주철근 부착 및 정착의 해석적 평가 (Analytical Evaluation of Beam-Bar Bond and Anchorage in Beam-column joints under Cyclic Loading)

  • 오수연;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.510-513
    • /
    • 2004
  • The objectives of this research are to evaluate the effect of the compressive strength of concrete, reinforcing bar size, spacing of column transverse bars related to the concrete confinement effects on anchorage bond strength and bond behavior of beam-column joints subjected to cyclic loading and to predict the bond behavior of beam-column joints according to the variables by Finite Element Analysis appling the interface element between concrete and reinforced bar surface in a three-dimensional configuration. This paper shows that to verify the results by three-dimensional nonlinear finite element analysis appling a interface element, the test results that were already conducted are compared with analytic results. The behavior of bond and anchorage of beam bar is expressed by a local bond stress-slip relationship and the failure mode of bond is predicted by principal stress contour.

  • PDF

단관 환형배플 시스템의 전열성능에 대한 수치해석 (A Numerical Study on the Heat Transfer Performance of Single-Tube Annular Baffle System)

  • 홍정아;전용두;이금배
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.621-626
    • /
    • 2012
  • A new baffle configuration, an annular baffles, are considered in the present study as an alternative to reduce the excessive pressure drop associated with the conventional segmental ones in typical operating conditions. The heat transfer and pressure drops are numerically simulated for a single tube shell-and-tube model and compared against the conventional-baffle cases. Baffle blockage ratio and number of baffles are considered as the major variables for the present study specifying a fixed baffle spacing. It is found that the heat transfer increases 1.4~2.2 times without significant pressure loss compared to the bare tube cases and the goodness factor increases 1.35 times compared to the conventional-baffle model.

Air-Data Estimation for Air-Breathing Hypersonic Vehicles

  • Kang, Bryan-Heejin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.75-86
    • /
    • 1999
  • An air-data estimator for generic air-breathing hypersonic vehicles (AHSVs) is developed and demonstrated with an example vehicle configuration. The AHSV air-data estimation strategy emphasized improvement of the angle of attack estimate accuracy to a degree necessitated by the stringent operational requirements of the air-breathing propulsion. the resulting estimation problem involves highly nonlinear diffusion process (propagation); consequently, significant distortion of a posteriori conditional density is suspected. A simulation based statistical analysis tool is developed to characterize the nonlinear diffusion process. The statistical analysis results indicate that the diffusion process preserves the symmetry and unimodality of initial probability density shape state variables, and provide the basis for applicability of an Extended Kalman Filter (EKF). An EKF is designed for the AHSV air-data system and the air data estimation capabilities are demonstrated.

  • PDF

최적 단면 치수를 가지는 복합재료 U-Beam의 설계 (Design of composite channel section beam for optimal dimensions)

  • 이헌창;전흥재;박지상;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.276-279
    • /
    • 2002
  • A problem formulation and solution for design optimization of laminated composite channel section beam is presented in this study. The objective of this study is the determination of optimum section dimensions of composite laminated channel section beam which has equivalent flexural rigidities to flexural rigidities of steel channel section beam. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The model is used to determine the optimal section dimensions of composite channel section beam. The web height, flange width and thickness of the beam are treated as design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF

공기감쇠기의 최적설계와 세탁기에의 응용 (Optimal Design of Air Dampers Applied on Wash Mechines)

  • 양보석;이재무;하종훈
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2477-2485
    • /
    • 1994
  • Air damper has a great advantage that is independent of temperature change. This paper presents an analysis approach and an application for designing nonviscous air damper with a piston and a cylinder. The objective functions for optimum design is damping coefficient and is maximized by changing two design variables that are length between piston and cylinder and orifice diameter. A digital computer program was developed which determines optimal air damper configuration for maximum damping coefficients. The results were applied to the automatic washer and are confirmed to be valid for the range of operating conditions.

GT 셀 형성을 위한 효율적 Ρ-median 접근법 (Efficient Ρ-median approach to GT cell formation)

  • Won, Youkyung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.40-43
    • /
    • 2000
  • This paper is concerned with development of an efficient Ρ-median approach applicable to large cell formation(CF) problems. A two-phase methodology that seeks to minimize the number of exceptional elements is proposed. In phase I, two efficient Ρ-median formulations which contain fewer binary variables than existing Ρ-median formulations are constructed. These make it possible to implement large CF problem within reasonable computer runtime with commercially available linear integer programming codes. Given the initial cell configuration found with the new p-median formulations, in phase II bottleneck machines and parts are reassigned to reduce the number of exceptional elements. This procedure has the flexibility to provide the cell designer with alternative solutions. Test results on large CF problems show a substantial efficiency of the new Ρ-median formulations.

  • PDF

Computational Method for Dynamic Analysis of Constrained Mechanical Systems Using Partial Velocity Matrix Transformation

  • Park, Jung-Hun;Yoo, Hong-Hee;Hwang, Yo-Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.159-167
    • /
    • 2000
  • A computational method for the dynamic analysis of a constrained mechanical system is presented in this paper. The partial velocity matrix, which is the null space of the Jacobian of the constraint equations, is used as the key ingredient for the derivation of reduced equations of motion. The acceleration constraint equations are solved simultaneously with the equations of motion. Thus, the total number of equations to be integrated is equivalent to that of the pseudo generalized coordinates, which denote all the variables employed to describe the configuration of the system of concern. Two well-known conventional methods are briefly introduced and compared with the present method. Three numerical examples are solved to demonstrate the solution accuracy, the computational efficiency, and the numerical stability of the present method.

  • PDF

알루미늄 합금 형재의 열간압출 금형설계 (A Design of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys)

  • 조해용;김관우;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.531-534
    • /
    • 1997
  • A design system of dies for hot extrusion of structural shapes such as Z' s, L' s, T' s, U' s and H' s from aluminum alloys was developed in this study. The developed design system of dies is based of established die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module. die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course..

  • PDF

Design of Passive Treatment Systems for Mine Drainage Waters

  • Jeen, Sung-Wook
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.1-9
    • /
    • 2017
  • Passive treatment systems are commonly used for remediation of mine drainage waters because they do not require continuous chemical inputs and operation. In this study, the selection and design criteria for such systems were evaluated, particularly the two most commonly used ones, i.e., permeable reactive barriers (PRBs) and vertical flow biological reactors (VFBRs). PRBs and VFBRs are operated on the same principles in terms of biochemical reaction mechanisms, whereas differences relate to configuration, engineering, and water management. In this study, each of these systems were described with respect to key design variables, such as metal removal mechanisms and removal rates, effectiveness and longevity, general design and construction, flow capacity, and cost. The information provided from this study could be used as a design guideline when a passive treatment option is considered for potential remediation of a mine site.

Genetic algorithms for balancing multiple variables in design practice

  • Kim, Bomin;Lee, Youngjin
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.241-256
    • /
    • 2017
  • This paper introduces the process for Multi-objective Optimization Framework (MOF) which mediates multiple conflicting design targets. Even though the extensive researches have shown the benefits of optimization in engineering and design disciplines, most optimizations have been limited to the performance-related targets or the single-objective optimization which seek optimum solution within one design parameter. In design practice, however, designers should consider the multiple parameters whose resultant purposes are conflicting. The MOF is a BIM-integrated and simulation-based parametric workflow capable of optimizing the configuration of building components by using performance and non-performance driven measure to satisfy requirements including build programs, climate-based daylighting, occupant's experience, construction cost and etc. The MOF will generate, evaluate all different possible configurations within the predefined each parameter, present the most optimized set of solution, and then feed BIM environment to minimize data loss across software platform. This paper illustrates how Multi-objective optimization methodology can be utilized in design practice by integrating advanced simulation, optimization algorithm and BIM.