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Efficient p-median approach to GT cell formation
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Abstract

This paper is concerned with development of an efficient p-median approach applicable to large cell formation(CF)
problems. A two-phase methodology that seeks to minimize the number of exceptional elements is proposed. In phase I,
two efficient p-median formulatiors which contain fewer binary variables than existing p-median formulations are
constructed. These make it possible to implement large CF problem within reasonable computer runtime with
commercially available linear integer programming codes. Given the initial cell configuration found with the new p-
median formulations, in phase II bottleneck machines and parts are reassigned to reduce the number of exceptional
elements. This procedure has the flexibility to provide the cell designer with alternative solutions. Test results on large
CF problems show a substantial efficiency of the new p-median formulations.

1. Introduction

Group Technology(GT) is a manufacturing philosophy
that identifies and exploits the similarities of product
design and manufacturing process. The basic idea of GT is
to decompose a manufacturing system into subsystems,
facilitating better control. Cellular manufacturing (CM)
is an application of GT principles to manufacturing. The
most important step toward designing a CM system is cell
formation(CF). CF consists of identifying part families
and machine cells such that a part family is processed
within a machine cell with minimum interaction with other
cells. A part family consists of batches of parts requiring
similar or identical processing and its corresponding
machine cell consists of dissimilar machines dedicated to
process the parts of that specific part family.

The objective of CF is to create mutually independent
machine cells which are capable of processing a part
family completely. The main input to CF problem is the
mxn machine-part incidence matrix where each row
corresponds to a machine and each column to a part. The
machine-part incidence matrix is a binary matrix
A(=[ai]) where the element aij is | or O depending on

whether or not part j requires processing on machine i.

The best block-diagonal structure from the incidence
matrix means the best cells configuration with minimum
intercell part moves. However, CF process often identifies
exceptional elements('1' entries outside the diagonal
block). which create interactions between cells.
Exceptional elements are the results of bottleneck
machines that are needed to process a large number of
parts found in two or more part families, or bottleneck
parts that require processing on machines assigned to two
or more machine cells. Most of the studies on CF problem
are concerned with eliminating or minimizing the

exceptional elements.

Many researchers have addressed the CF problem and
proposed numerous methods for grouping machines and
parts. Mathematical programming approaches attempt to
find the cells and families by formulating the problem into
linear or nonlinear programming models. Kusiak[5]
suggested a linear integer programming model, called the
p-median model. Since Kusiak suggested using p-median
model as a methodology for solving CF problem, many
authors have reported successful applications to cell
configuration with slight modifications over the original
formulation([2],[9]-[11]). However, the existing p-median
formulations have critical limitations in that the
formulations can only be applied to small CF problems.

The purpose of this study is to develop an efficient p-
median approach applicable to large CF problems. A two-
phase methodology that seeks to minimize the number of
exceptional elements is proposed. In phase I, two efficient
p-median  formulations which “contain fewer binary
variables than existing p-median formulations are
proposed. This improvement makes it possible to
implement the p-median model on large CF problems
within reasonable computer runtime with commercially
available linear integer programming codes. Given the
initial cell configuration found using the new p-median
formulation, in phase II bottleneck machines and parts are
reassigned to reduce the number of exceptional elements.

2. Phase I: efficient p-median formulations

2.1. Quadratic 0-1 formulation

In this paper, the quadratic 0-1 formulation of Kumar
et alf{4] which is frequently addressed by many
authors({1],{6]) is adopted. To cluster m machines into
the prespecified p cells, the following binary variable is
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0, otherwise.
The quadratic p-median model used is as follows:

(Q0)

{l,if machine 4 belongstocelli, h,i=1,A ,m
Xhi=

m m

Maximize Y 3 shixhkxik (1)
h=1 i=1
subject to
m
Sxhi=l, h=1A ,m 2)
i=1
m
Sxik<U, k=1A p 3)
i=1
m
xik2L, k=LA p @
i=1
xik =0orl, i=LA mk=1LA,p. (5)

The objective function (1) maximizes the sum of
McAuley’s machine similarities[7] within cells without
regard to the machine identified as a median of cell.
Constraint (2) specifies that each machine needs to be
assigned to one and only one cell. Constraints (3) and (4)
specify the maximum and the minimum number of
machines assigned to each cell, respectively. Constraint
(5) ensures the binary solution.

2.2. Linearization of (Q0)
To linearize the quadratic terms in equation (1), let

Zhk = Xhk gshixik
i=h+1
Then, based on Oral and Kettani's finding[8], the
following linear formulation equivalent to (QO) is
obtained:
(LD

m-1 p
Maximize Y 3 (ski’xhk — zhk) (6)
h=1 k=1

subject to  (2)-(5) and

m
zhk > 3 (—shi)xik + shi* xuk + sni” (1 - xhk),
i=h+1

h=LA m-L k=LA ,p @)
zik20, k=LA m-L k=LA ,p (8)

m m

where sm* =maxy, _,  swkand suk* =miny,

i=h+1 Shi .

=h+]
The objective function value of (6) is the same as one of (1)
in optimal solution. In constraint (7), sak* is the sum of the
largest (p—1) coefficients of swi for h=1LA ,m-1. It

then is easily seen that sm* =A skp* for h=1A ,m—1.
On
the other hand, sak™ can always be set to 0 for any 4 if
shi20 for all A,i. Note that in constraint (8) the extra
variable zki is continuous. As a result this, the linear
model (L1} contains  pm binary  variables,
p{(m—1) continuous variables, and only a total of
(p + )m linear constraints. With this linear formulation,
we can save considerable computation efforts compared
with the classical p-median formulations which requires
m? binary variables since p <m.

2.3 Further reduction of binary variables

The linear formulation (L1) is further reduced in terms
of the number of binary variables. The reduction is based
on Kettani and Oral's work[3]. To reduce the number of
binary variables in (L1), the following notation is
introduced:

P={LA ,p}
p= [log, pI* : the smallest integer greater than
logy p

P ={LA,p")

D={2"1deP"

wj = {wjL,A ,wjp"} : binary representation vector of J

Ad={jlwid,jeP},deP

Bi={d|wja,deP"},jeP

Ci={llwizwj,l# jleP},jeP.

Reduction of binary variables is applied to the set of
constraints on machine cells and the binary restriction.
Then, following Kettani and Oral's finding, the
constraints (2) and (5) can be equivalently replaced by

1< 2 ia<p, i=LA ,m )
deP*
Sxik=uid, i=1,A ,mdeP" (10)
ke Ad

xik+ Xxil2 Y(uid-1)+1,i=1LA mkeP-D (11)

leCk deBk
xik20, h=1A,mk=1A,p (12)
wid =0orl, i=L,A,m;d=1A,p". (13)

With the equivalent constraints above, the new p-
median median formulation further reduced in terms of the
binary variables is as follows:

(L2)
Maximize  (6)
Subject to (2)-(4), (7),(8), and (9)-(13).

Table 1 summarizes the total number of the variables
and the constraints required in Wang and Roze’s p-median
formulation[11] and the reduced p-median formulations. It
is obvious from the table that as compared with existing p-
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median formulation the reduced formulations generally
require fewer binary variables since [log, p]*<p<m in
a typical CF problem. The number of extra continuous
variables needed in the reduced formulations is also
maintained at a minimum level.

Reduced formulation

Wang &
Roze L1 L2
Variables
binary m? pm [log; pI*'m
continous 0 p(m~1) p(2m-1)
Constraint 3m+1 (p+Dm p2m-1)

Table 1. Number of variables and constraints required in
formulations

3. Phase II: reassignment of machines and

parts

To improve the incumbent cell configuration which is
obtained using the new p-median mathematical model,
subsequent reassignment of bottleneck machines and parts
is essential. Reassignment of bottleneck machines and
parts which does not rely on human judgement is based on
simple rearrangement of rows and columns. The basic idea
of reassignment of bottleneck machines and parts is to
apply maximum density rule with regard to rows and
columns of the incumbent rearranged incidence matrix
until no further improvement on the number of exceptional
elements is attained. Detailed steps of phase II for
reassignment of bottleneck machines and parts are as
follows:

Step [.(Initialization) Start with the rearranged
incidence matrix which is obtained by applying maximum
density rule with regard to parts from the machine cell
solution of phase I and compute the number of exceptional
elements from the incumbent rearranged matrix.

Step 2.(Reassignment of bottleneck machines) For
each bottleneck machine, compute the number of parts(i.e,
1's) which it processes in each cell. If the size of the cell to
which that bottleneck machine belongs is greater than or
equal to 2, reassign that machine to the smallest cell in
which it processes most parts. Otherwise, reassign that
bottleneck machine to the next smallest cell in which it
processes most parts and merge the current part family
corresponding to the cell to which that bottleneck machine
belongs into the part family corresponding to that next
smallest cell.

Step 3.(Reassignment of bottleneck parts) For each
bottleneck part, compute the number of visits to each cell.
If the size of the family to which that bottleneck part
belongs is greater than or equal to 2, reassign that part to
the smallest family corresponding to the cell in which it
visits most machines. Otherwise, reassign that bottleneck
part to the next smallest family corresponding to the cell in

which it visits most machines and merge the current
machine cell corresponding to the family to which that
bottleneck part belongs into the machine cell
corresponding to that next smallest family.

Step 4.(Stopping) Recompute the number of
exceptional elements. If the number of exceptional
elements decreases, stop. Otherwise, go to Step 2.

4. Numerical example

One published problem taken from Zolfaghari and
Liang[12] was used to compare the efficiency of the
existing p-median formulation and reduced p-median
formulations. The selected data represents an incidence
matrix with 50 machines, 150 parts and | A |= 874 which
is the largest machine-part incidence matrix reported in the
literature as far as the present author knows. The tests
were made on an HP 9000/715 workstation using the
CPLEX mixed integer optimization software. The number
of cells required are set to 5, 6 and 7, respectively. The
lower limits on cell size are set to 2 in all cases so as to
avoid single-machine cell solutions and the upper limits on
cell size are set to 16, 13 and 10, respectively, for p =5,6
and 7. The tests were made on two p-median formulations,
Wang and Roze’s formulation[11] and (L2).

Table 2 summarizes the computational results. In the
table, not only the number of exceptional elements at the
end of each phase but also the grouping efficiency
corresponding to the number of exceptional elements
found at the end of phase II is reported as the fractional
value in parentheses for comparison purpose. Note that for
increasing values of p the existing p-median formulation
does not find any integer feasible solution under the time
limit of 600 CPU seconds. On the other hand, the reduced
formulation (L2) find good integer feasible solutions
under the same CPU limit as Wang and Roze’s
formulation. After reassignment of machines and parts, the
initial cell configuration is improved further.

# of exceptional elements

L2
Initial Wang & Final
value of p Roze Phasel Phasell valueofp
5 A 139 52(.744b) 5
6 A 125 58(.750) 5
7 A 410 60(.819) 6

(a) indicates that the formulation (P1) finds no integer
feasible solution under the time limit of 600 CPU seconds.
(b) represents the grouping efficiency corresponding to the
number of exceptional elements found at the end of phase
I of the formulation (L2).

Table 2. Solutions to Zolfaghari and Liang’s problem

5. Concluding remarks

In this paper a two-phase methodology for solving
large CF problems is developed. Phase I uses efficient p-
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median formulations to find initial cell configuration. The
p-median formulations proposed in phase I contain fewer
binary variables as compared with existing p-median
formulations. This helps to find good initial cell
configuration within reasonable computer runtime for
large CF problem. Phase II applies maximum density rule

to improve the incumbent cell configuration in terms of

the number of exceptional elements. The procedure
consists of reassigning bottleneck machines and parts by
applying the rule with regard to rows and columns of the
incumbent rearranged incidence matrix until no further
improvement on the number of exceptional elements is
attained. The test results show that on large CF problems
the p-median formulation proposed in phase I yields good
integer solutions within reasonable time limit and phase II
improves the initial cell configuration substantially.
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