• Title/Summary/Keyword: Cone-beam computed tomography(CBCT)

Search Result 563, Processing Time 0.027 seconds

Procedural errors detected by cone beam tomography in cases with indication for retreatment: in vivo cross-sectional study

  • Henry Paul Valverde Haro;Carmen Rosa Garcia Rupaya;Flavio R. F. Alves
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.3
    • /
    • pp.26.1-26.14
    • /
    • 2024
  • Objectives: This study aimed to investigate the frequency and type of endodontic procedural errors in cases indicated for retreatment through cone-beam computed tomography (CBCT) analysis. Materials and Methods: The sample consisted of 96 CBCT scans, encompassing 122 permanent teeth with fully formed roots. Errors included perforation, instrument fracture, canal transportation, missed canals, and inadequate apical limit of filling. Additionally, potential risk factors were analyzed and subjected to statistical modeling. Results: The most frequent procedural error observed was the inadequate apical limit of filling, followed by canal transportation, perforation, missed canal, and instrument fracture. Statistically significant associations were identified between various procedural errors and specific factors. These include canal transportation and root canal wall, with the buccal wall being the most commonly affected; missed canal and tooth type, particularly the palatine and second mesiobuccal canal canals; inadequate apical limit of filling and root curvature, showing a higher deviation to the mesial direction in severely curved canals; inadequate apical limit of filling and the presence of calcifications, with underfilling being the most frequent; canal transportation and periapical lesion, notably with deviation to the buccal direction; and the direction of perforation and periapical lesion, most frequently occurring to buccal direction. Conclusions: CBCT emerges as a valuable tool in identifying procedural errors and associated factors, crucial for their prevention and management.

Assessment of the role of cone beam computed sialography in diagnosing salivary gland lesions

  • Abdel-Wahed, Nagla'a;Amer, Maha E.;Abo-Taleb, Noha Saleh Mahmoud
    • Imaging Science in Dentistry
    • /
    • v.43 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Purpose: The purpose of this study was to assess cone-beam computed (CBCT) sialography imaging in the detection of different changes associated with lesions of salivary glands. Materials and Methods: This study consisted of 8 cases with signs and symptoms from salivary gland lesions. Conventional sialography using digital panoramic and lateral oblique radiographs and CBCT sialography were performed for each subject. The radiographs were evaluated by 3 radiologists independently of each other. The results were compared between conventional sialography and CBCT sialography in the evaluation of various lesions associated with the salivary glands. Results: There was an agreement between the radiologists in interpreting the lesions that affected salivary glands with both techniques. The detection of the presence of stones or filling defects, stenosis, ductal evagination, dilatation, and space occupying lesions was 83% for conventional sialography compared with CBCT sialography. CBCT sialography was superior to conventional sialography in revealing stones, stenosis, and strictures, especially in the second and third order branches. Conclusion: It would be advisable to perform CBCT sialography in cases of obstructive salivary gland diseases for better demonstration of the ductal system of the gland.

Trifid mandibular canal in Cone-Beam CT : A case report (CBCT에서 관찰되는 trifid mandibular canal)

  • Han, Won-Jeong
    • The Journal of the Korean dental association
    • /
    • v.56 no.2
    • /
    • pp.113-119
    • /
    • 2018
  • Trifid mandibular canal (TMC) is one of the anatomical variation of mandibular canal with clinical importance. An extra mandibular canal may explain inadequate anesthesis and be damaged causing paresthesia or bleeding during mandibular surgery. CBCT with high-level spatial resolution is an useful tool for the detection of mandibular canal and its variation. The aim of this report is to present a case of trifid mandibular canal with CBCT images and to give information on this anatomical variation of mandibular canal.

  • PDF

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

Detection of furcation involvement using periapical radiography and 2 cone-beam computed tomography imaging protocols with and without a metallic post: An animal study

  • Salineiro, Fernanda Cristina Sales;Gialain, Ivan Onone;Kobayashi-Velasco, Solange;Pannuti, Claudio Mendes;Cavalcanti, Marcelo Gusmao Paraiso
    • Imaging Science in Dentistry
    • /
    • v.47 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • Purpose: The purpose of this study was to assess the accuracy, sensitivity, and specificity of the diagnosis of incipient furcation involvement with periapical radiography (PR) and 2 cone-beam computed tomography (CBCT) imaging protocols, and to test metal artifact interference. Materials and Methods: Mandibular second molars in 10 macerated pig mandibles were divided into those that showed no furcation involvement and those with lesions in the furcation area. Exams using PR and 2 different CBCT imaging protocols were performed with and without a metallic post. Each image was analyzed twice by 2 observers who rated the absence or presence of furcation involvement according to a 5-point scale. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy, sensitivity, and specificity of the observations. Results: The accuracy of the CBCT imaging protocols ranged from 67.5% to 82.5% in the images obtained with a metallic post and from 72.5% to 80% in those without a metallic post. The accuracy of PR ranged from 37.5% to 55% in the images with a metallic post and from 42.5% to 62.5% in those without a metallic post. The area under the ROC curve values for the CBCT imaging protocols ranged from 0.813 to 0.802, and for PR ranged from 0.503 to 0.448. Conclusion: Both CBCT imaging protocols showed higher accuracy, sensitivity, and specificity than PR in the detection of incipient furcation involvement. Based on these results, CBCT may be considered a reliable tool for detecting incipient furcation involvement following a clinical periodontal exam, even in the presence of a metallic post.

Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection

  • Saberi, Bardia Vadiati;Khosravifard, Negar;Ghandari, Farnaz;Hadinezhad, Arash
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • Purpose: To compare the diagnostic accuracy of cone-beam computed tomography (CBCT) with that of parallel(PPA) and oblique projected periapical(OPA) radiography for the detection of different types of peri-implant bone defects. Materials and Methods: Forty implants inserted into bovine rib blocks were used. Thirty had standardized bone defects(10 each of angular, fenestration, and dehiscence defects), and 10 were defect-free controls. CBCT, PPA, and OPA images of the samples were acquired. The images were evaluated twice by each of 2 blinded observers regarding the presence or absence and the type of the defects. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were determined for each radiographic technique. The 3 modalities were compared using the Fisher exact and chi-square tests, with P<0.05 considered as statistical significance. Results: High inter-examiner reliability was observed for the 3 techniques. Angular defects were detected with high sensitivity and specificity by all 3 modalities. CBCT and OPA showed similar AUC and sensitivity in the detection of fenestration defects. In the identification of dehiscence defects, CBCT showed the highest sensitivity, followed by OPA and PPA, respectively. CBCT and OPA had a significantly greater ability than PPA to detect fenestration and dehiscence defects(P<0.05). Conclusion: The application of OPA radiography in addition to routine PPA imaging as a radiographic follow-up method for dental implantation greatly enhances the visualization of fenestration and dehiscence defects. CBCT properly depicted all defect types studied, but it involves a relatively high dose of radiation and cost.

Comparison of accuracy between panoramic radiography, cone-beam computed tomography, and ultrasonography in detection of foreign bodies in the maxillofacial region: an in vitro study

  • Abdinian, Mehrdad;Aminian, Maedeh;Seyyedkhamesi, Samad
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • Objectives: Foreign bodies (FBs) account for 3.8% of all pathologies of the head and neck region, and approximately one third of them are missed on initial examination. Thus, FBs represent diagnostic challenges to maxillofacial surgeons, rendering it necessary to employ an appropriate imaging modality in suspected cases. Materials and Methods: In this cross-sectional study, five different materials, including wood, metal, glass, tooth and stone, were prepared in three sizes (0.5, 1, and 2 mm) and placed in three locations (soft tissue, air-filled space and bone surface) within a sheep's head (one day after death) and scanned by panoramic radiography, cone-beam computed tomography (CBCT), and ultrasonography (US) devices. The images were reviewed, and accuracy of the detection modalities was recorded. The data were analyzed statistically using the Kruskal-Wallis, Mann-Whitney U-test, Friedman, Wilcoxon signed-rank and kappa tests (P<0.05). Results: CBCT was more accurate in detection of FBs than panoramic radiography and US (P<0.001). Metal was the most visible FB in all of modalities. US was the most accurate technique for detecting wooden materials, and CBCT was the best modality for detecting all other materials, regardless of size or location (P<0.05). The detection accuracy of US was greater in soft tissue, while both CBCT and panoramic radiography had minimal accuracy in detection of FBs in soft tissue. Conclusion: CBCT was the most accurate detection modality for all the sizes, locations and compositions of FBs, except for the wooden materials. Therefore, we recommend CBCT as the gold standard of imaging for detecting FBs in the maxillofacial region.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

A comparative study of the reproducibility of landmark identification on posteroanterior and anteroposterior cephalograms generated from cone-beam computed tomography scans

  • Na, Eui-Ri;Aljawad, Hussein;Lee, Kyung-Min;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.49 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • Objective: This in-vivo study aimed to compare landmark identification errors in anteroposterior (AP) and posteroanterior (PA) cephalograms generated from cone-beam computed tomography (CBCT) scan data in order to examine the feasibility of using AP cephalograms in clinical settings. Methods: AP and PA cephalograms were generated from CBCT scans obtained from 25 adults. Four experienced and four inexperienced examiners were selected depending on their experience levels in analyzing frontal cephalograms. They identified six cephalometric landmarks on AP and PA cephalograms. The errors incurred in positioning the cephalometric landmarks on the AP and PA cephalograms were calculated by using the straight-line distance and the horizontal and vertical components as parameters. Results: Comparison of the landmark identification errors in CBCT-generated frontal cephalograms revealed that landmark-dependent differences were greater than experienceor projection-dependent differences. Comparisons of landmark identification errors in the horizontal and vertical directions revealed larger errors in identification of the crista galli and anterior nasal spine in the vertical direction and the menton in the horizontal direction, in comparison with the other landmarks. Comparison of landmark identification errors between the AP and PA projections in CBCT-generated images revealed a slightly higher error rate in the AP projections, with no inter-examiner differences. Statistical testing of the differences in landmark identification errors between AP and PA cephalograms showed no statistically significant differences for all landmarks. Conclusions: The reproducibility of CBCT-generated AP cephalograms is comparable to that of PA cephalograms; therefore, AP cephalograms can be generated reliably from CBCT scan data in clinical settings.

Comparison of panoramic radiography and cone-beam computed tomography for assessing radiographic signs indicating root protrusion into the maxillary sinus

  • Jung, Yun-Hoa;Cho, Bong-Hae;Hwang, Jae Joon
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.309-318
    • /
    • 2020
  • Purpose: This study investigated correlations between findings on panoramic radiographs and cone-beam computed tomography (CBCT) to assess the relationship between the maxillary sinus floor and the roots of maxillary posterior teeth. In addition, radiographic signs indicating actual root protrusion into the maxillary sinus were evaluated on panoramic radiographs. Materials and Methods: Paired panoramic radiographs and CBCT images from 305 subjects were analyzed. This analysis classified 2,440 maxillary premolars and molars according to their relationship with the maxillary sinus floor on panoramic radiographs and CBCT images. In addition, interruption of the sinus floor was examined on panoramic radiographs. Results: Root protrusion into the maxillary sinus occurred most frequently in the mesiobuccal roots of the second molars. The classification according to panoramic radiographs and CBCT images was the same in more than 90% of cases when there was no contact between the root apex and the sinus floor. When the panoramic radiograph showed root protrusion into the sinus, the CBCT images showed the same classification in 67.5% of second molars, 48.8% of first molars, and 53.3% of second premolars. There was a statistically significant relationship between interruption of the sinus floor on panoramic radiographs and root protrusion into the sinus on CBCT images. Conclusion: The presence of root protrusion into the sinus on panoramic radiographs demonstrated a moderate ability to predict root protrusion into the maxillary sinus. Interruption of the maxillary sinus floor could be considered an indicator of actual root protrusion into the maxillary sinus.