• Title/Summary/Keyword: Cone penetration resistance

Search Result 111, Processing Time 0.02 seconds

A Comparative Study between BPNN and RNN on the Settlement Prediction during Soft Ground Embankment (연약지반상의 성토시 침하예측에 대한 BPNN과 RNN의 비교 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong;Kim, Seon Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.1
    • /
    • pp.37-53
    • /
    • 2007
  • Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.

  • PDF

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Evaluation of Cementation Effect of Jeju Coastal Sediments (제주연안 퇴적층의 고결 평가)

  • Lee, Moon-Joo;Kim, Jae-Jeong;Shim, Jai-Beom;Lim, Chai-Geun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.105-115
    • /
    • 2009
  • The Jeju sand was sampled from the beach in Jeju Island and its basic properties were analyzed. The cementation effect of Jeju coastal sediments was evaluated from in-situ tests such as SPT, CPT, and the Suspension-PS test. It was shown from test results that the Jeju sand has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles, similar to typical calcareous sands. From cone penetration test in the calibration chamber, it was found that the cone resistance($q_c$)-relative density($D_R$)-vertical effective stress(${\sigma}_v'$) relation of Jeju sand almost matches that of high compressible quartz sand. However, the $q_C-D_R-{\sigma}_v'$ correlation suggested for uncemented Jeju sand overestimates the relative density of coastal sediments of Jeju Island due to the cementation effect. From the analysis of the relation of cone resistance, N value, and small strain shear modulus measured in-situ, it seems reasonable to assume that the coastal sediment of Jeju Island is a naturally cemented one.

A Study on Centrifuge Model Experiments of Soft Soil Ground Installed with PBD (PBD가 설치된 연약지반의 원심모형실험에 관한 연구)

  • Jeong, Gil-Soo;Park, Byung-Soo;Jeon, Sang-Hyun;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.101-108
    • /
    • 2006
  • This study is the results of experimental and numerical study on the consolidational behavior of multi-layered soft soil ground installed with plastic board drains (PBD). Centrifuge model tests with a marine clay sampled from field were performed to investigate the consolidational behavior of multi-layered ground where a dredged soil was placed on the soft clay ground and PBDs were installed. Test results were compared with those of numerical analyses, using the 2-D equivalent model previously proposed. From test results, it was found that the amount of consolidation settlement occurred in the original ground due to embankment surcharge loads was in the range of 38% of total settlement in the whole ground. From the results of cone penetration tests executed after finishing the centrifuge model tests, the cone resistance was found to increase with depth. The measured water contents inbetween PBDs were in the ranges of 38~50% and their values tended to increase with increasing the distance between PBDs.

  • PDF

Study of Temperature Compensation method in Mini-Cones (소형 콘의 온도보상 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Cho, Se-Hyun;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.29-38
    • /
    • 2011
  • The smaller diameter cone penetrometer has been widely used to estimate the characteristics of local area due to high vertical resolution. The half-bridge cirucits have been adopted to measure the mechnical strength of soil through the smaller diameter cone penetrometer due to the limitation of the areas for configuring the full-bridge circuit. The half-bridge circuit, however, is known as being easily affected to the temperature variation. The objective of this study suggests the temperature-compensated method in mini-cones. The diameter and length of the mini-cone is designed to 15mm and 56mm. The load cell of the mini-cone is extended about 54mm on the behind of the mini-cone to reflect the only temperature variation. The full-bridge circuit is installed to measure the temperature-compensated values in the mini-cone and the half-bridge circuit is also organized to compare the temperature compensated values with uncompensated values. The seasonal variation tests are performed to define the effect of temperature variation under summer and winter temperature condition. The densification tests are also carried out to investigate temperature effects during penetration. The measured mechanical resistances with temperature-compensated method show more reliable and reasonable values than those measured by thermal uncompensated system. This study suggests that the temperature-compensated method of the mini-cone may be a useful technique to obtain the more reliable resistances with minimizing the temperature effect.

Finite Element Analysis of Piezocone Test II (피에조콘 시험의 유한요소 해석 II)

  • 김대규;김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.191-199
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests has been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model, virtual work equation, and theory of mixtures formulated in the Up[dated Lagrangian reference frame for the large deformation and finite strain nature of piezocone penetration. The formulated equations have been implemented into a finite element program. The cone resistance, excess pore water pressure, and dissipation of excess pore water pressure from the finite element analysis have been compared and investigated. An effective simulation could be performed with the use of the anisotropic and viscous soil model. The finite element formulations and the results are described in part 'I' and part 'II' respectively.

  • PDF

Evaluation of Piezocone Factors Applicable to Soft Ground Around Siwha Lake by Statistical Analysis (시화호 주변 연약지반 피에조콘계수 산정에 관한 통계적 분석)

  • Chung, Jin-Hyuck;Park, Soo-Beom;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.89-100
    • /
    • 2008
  • Applying graph and correlation developed in other countries to the domestic field has limits. Therefore, it is necessary that Piezocone factor should be determined by including ground characteristics obtained from various test results in the domestic site for better application. In this study, laboratory tests and field tests were performed to find the characteristics of soft ground which was widely distributed around Siwha lake. A comparative analysis of these tests with Piezocone penetration test was performed and the Piezocone factor was estimated by correlationship analysis of undrained shear strength and cone resistance. Also, an appropriate Piezocone factor in the study site was reestimated by utilizing statistical analysis method for deriving reliable result.

Geostatistical Integrated Analysis of MASW and CPTu data for Assessment of Soft Ground (연약지반 평가를 위한 MASW탐사와 CPTu 자료의 지구통계학적 복합 분석)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • In order to delineate the soft ground distribution, an integrated geostatistical analysis was performed using the MASW (Multichannel Analysis of Surface Wave) which has the information of overall region and CPTu (Piezo Cone Penetration Test) which provides the direct information of the measuring point of the ground. MASW results were known to have close relationship with the ground stiffness. This correlation was confirmed through the comparison of MASW data obtained from two survey lines to the laboratory test with extracted soil samples. 3D physical property distribution in the study area was acquired by geostatistical integrated analysis with the data of tip resistance ($q_c$) and pore pressure (u) from the CPTu obtained at 6 points within the study area. The integrated analysis was conducted by applying the COSGSIM (Sequential Gaussian Co-Simulation) technology which can carry out the simulation in accordance with the spatial correlation between the MASW results and both tip resistance and pore pressure. Besides the locations of CPTu, borehole investigations were also conducted at two different positions. As a result, the N value of SPT and borehole log could be secured, so these data were used for the analysis of the geotechnical engineering accuracy of the integrated analysis result. For the verification of reliability of the 3D distribution of tip resistance and pore pressure secured through integrated analysis, the geotechnical information gained from the two drilling areas was compared, and the result showed extremely high correlation.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Effects of radiation therapy on the dislocation resistance of root canal sealers applied to dentin and the sealer-dentin interface: a pilot study

  • Pallavi Yaduka;Rubi Kataki;Debosmita Roy;Lima Das;Shachindra Goswami
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.22.1-22.12
    • /
    • 2021
  • Objectives: This study evaluated and compared the effects of radiation therapy on the dislocation resistance of AH Plus and BioRoot RCS applied to dentin and the sealer-dentin interface. Materials and Methods: Thirty single-rooted teeth were randomly assigned to 2 groups (n = 15 each): AH Plus (Dentsply DeTrey) and BioRoot RCS (Septodont). Each group was subdivided into control and experimental groups. The experimental group was subjected to a total radiation dose of 60 Gy. The root canals of all samples were cleaned, shaped, and obturated using the single-cone technique. Dentin slices (1 mm) were sectioned from each root third for the push-out test and scanning electron microscopy (SEM) was done to examine the sealer-dentin interface. The failure mode was determined using stereomicroscopy. Bond strength data were analyzed by the independent t-test, 1-way analysis of variance, and the Tukey post hoc test (α = 0.05). Results: Significantly lower bond strength was observed in irradiated teeth than non-irradiated teeth in the AH Plus group (p < 0.05). The BioRoot RCS group showed no significant reduction in bond strength after irradiation (p > 0.05) and showed a higher post-irradiation bond strength (209.92 ± 172.26 MPa) than the AH Plus group. SEM revealed slightly larger gap-containing regions in irradiated specimens from both groups. Conclusions: The dislocation resistance of BioRoot RCS was not significantly changed by irradiation and was higher than that of AH Plus. BioRoot RCS may be the sealer of choice for root canal treatment in patients undergoing radiation therapy.