• Title/Summary/Keyword: Cone penetration resistance

Search Result 111, Processing Time 0.028 seconds

Normalization of Cone Resistance in Granular Soil (모래지반에서 콘 저항값의 정규화에 관한 연구)

  • Na Yung-Mook
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.33-45
    • /
    • 2004
  • Sandfill at reclaimed sites is usually formed by more than one placement method. Reclaimed sandfill often shows highly variable profiles and the cone penetration test is most commonly used for site characterization. Correlations between cone resistance and geotechnical parameters for sand are influenced by in-situ stress level and it is important to incorporate stress level effect. In this study, cone penetration tests were performed at several elevations from the top of a 10m high surcharge, which was later removed step by step. In order to establish more reliable correlations between cone resistance and geotechnical parameters for sand, different ways of normalizing cone resistance by the corresponding in-situ vertical stress were investigated.

The Relationship Between Static Cone Penetration Resistance and the Reference Stress in Sandy Soils (사질토 지반에서의 정적관입저항과 기준응력과의 관계)

  • Baek, Se-Hwan;Lee, Myeong-Hwan;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.33-42
    • /
    • 1990
  • In the analysis of the static cone penetration resistance or the point resistance of end bearing piles, the vertical effective stress has been chosen as the reference stress. However many reported experimental results indicate that the cone tip resistance is dependent rather on the in -situ horzontal stress than the vertical effective stress. To clarify this point, published experimental results have been re-evaluated and the laboratory penetration tests have been performed. From the results it is concluded that the cone tip resistance is influenced by both the vertical effective stress and the horizontal effective stress. It is further concluded that the mean normal stress should be used as the reference stress in the analysis.

  • PDF

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

Development of Miniature Cone and Characteristics of Cone Tip Resistance in Centrifuge Model Tests (원심모형실험용 소형 콘 개발 및 콘 선단저항치 특성에 관한 연구)

  • Kim, Jae Hyun;Kim, Dong Joon;Kim, Dong Soo;Choo, Yun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.631-642
    • /
    • 2013
  • The standard CPT(Cone Penetration Test), which can be easily performed to investigate in-situ soil engineering properties, has been widely used. CPT are also widely being utilized in centrifuge model tests. In this study, a miniature cone with 10mm diameter was developed and its applicability in the centrifuge was evaluated. The developed miniature cone was equipped with a four degree-of-freedom in-flight robot. A series of cone penetration tests was performed under four centrifuge acceleration levels. As results, the cone resistances measured at the same confining stress within shallow penetration depth were affected by the centrifugal accelerations. The critical depth was proportional to the cone diameter and relative density. Cone resistances results below the critical depth and soil parameters obtained from the laboratory tests were compared with those by previously proposed empirical relations.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

A Study on the Determination of Construction Depth of Vertical Drain by Cone Resistance (콘 관입저항치를 이용한 수직배수재 타설심도 결정에 관한 연구)

  • Kim, Yeon-Jung;Kim, Nam-Ho;Shin Yun-Sup
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.261-269
    • /
    • 2006
  • Recently, piezocone penetration test is frequently used in order to estimate the characteristics of soft ground with standard penetration test; generally used in the past In this study, standard penetration test, piezocone penetration test, driving resistance of vertical drain were used in order to increase the confidence for determination of soft ground depth. And the compressible layer was determined by the comparison between the preconsolidation pressure and the designed increase pressure. As the results, the relation between standard penetration test and piezocone penetration test shows $q_c$=(1.09~1.63)N at the soft ground, determined by 5/30 N value. And $q_c$(1.21~1.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. And driving resistance of vertical drain is 70 f/$cm^2$ which is equal to 10kgf/$cm^2$ cone penetration resistance.

  • PDF

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Relation between Cone Tip Resistance and Deformation Modulus of Cemented Sand (고결모래의 콘선단저항과 변형계수의 관계)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the cone tip resistances of cemented sand are measured by performing a series of miniature cone penetration tests in large calibration chamber, and the relations with constrained modulus, unconfined compressive strength, and shear strength of cemented sand are suggested. Experimental results show that both the cone tip resistance and constrained modulus of sand increase with increasing cementation effect as well as relative density and confining stress. However, it is observed that the relative density and confining stress have more significant influence on cone tip resistance than constrained modulus of cemented sand. Since the cone penetration into the ground induces the damage of cementation, the cone tip resistance can't properly reflect the cementation effect of sand. An analysis based on the constrained modulus shows that the measured cone tip resistance underestimates the deformation modulus of cemented sand by about $70{\sim}85%$. In addition, this study establishes various relationships among the above soil properties from the regression analysis.

The Field Application of Miniature Cone Penetration Test System in Korea (소형콘관입시험(Miniature Cone Penetration Test)의 국내현장 적용)

  • Yoon, Sung-Soo;Ji, Wan-Goo;Kim, Jun-Ou;Kim, Rae-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.349-360
    • /
    • 2009
  • The cone penetration test(CPT) has gained its popularity in site characterization indebted by its reliability, speed, economy, and automatic measurement system since its development in the 1930s. The CPT results, commonly consisting of cone tip resistance, sleeve friction, and pore water pressure measurements, allow us to classify soils as well as to reveal their engineering characteristics. The site condition at which the CPT is allowable is often dependent on the capacity of a CPT system. In Korea, it has been considered that the CPT could be appled only to soft soils in most cases because CPT systems available for stiff soils are very rare due to their expensive procurement and maintenance cost. Luoisiana Transportation Research Center(LTRC) has developed and implemented a field-rugged continuous intrusion miniature cone penetration test(CIMCPT) system since the late 1990s. The miniature cone penetrometer has a sectional cone area of $2cm^2$ allowing system capacity reduction compared to the standard $10cm^2$ cone penetrometer. The continuous intrusion mechanism allows fast and economic site investigation. Samsung Engineering & Construction has recently developed and implemented a similar CIMCPT system based on its original version developed in LTRC. The performance of the Samsung CIMCPT system has been investigated by calibration with the standard CPT system at a well-characterized test site in Pusan, Korea. In addition, scale effect between the miniature cone penetrometer and the standard cone penetrometer has been investigated by comparing the field test results using the both systems.

  • PDF

Estimation of Ultimate Lateral Resistance for Lateral Loaded Short Piles Using CPT Results in Sand (CPT결과를 이용한 사질토지반에 관입된 짧은 단일말뚝의 극한수평단위지지력 산정)

  • Kim, Min-Kee;Hwang, Sung-Wook;Kyung, Du-Hyun;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1083-1086
    • /
    • 2008
  • In this study, Estimate solutions of ultimate lateral resistances for lateral loaded piles are proposed using cone penetration values, $q_c$ values, as CPT results. Cone penetration values, $q_c$ values measured on clean sand layers, are represented by factors for relative densities, axial stresses, and lateral stresses which are important on analysis of sandy soil layers. Also, these factors are same factors to consider existed estimations of ultimate lateral capacity. In this study, estimation of ultimate lateral capacity for lateral loaded piles using CPT results is proposed, and this estimation is verified by adequate analysis for effective reliability.

  • PDF